Datasets:
File size: 4,834 Bytes
8e59382 2ddacbd 8e59382 2ddacbd 8e59382 47f1297 8e59382 aabebcd 8e59382 f4c2a11 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 |
---
license: mit
task_categories:
- tabular-classification
- tabular-regression
language:
- en
tags:
- HTS
- Medicinal Chemistry
pretty_name: Liability
size_categories:
- 10K<n<100K
dataset_summery: >-
HTS datasets for thiol reactivity, redox activity, and luciferase (firefly and nano) activity, and each dataset contains ~5000 compounds.
We have sanitized the datasets from the paper below and uploaded them to our Hugging Face repository.
citation: >-
@article{Willson2023,
author = {Thomas M. Willson and Matthew G. Metzger and Regina A. Buchthal and Patrick R. Griffin},
title = {Identifying and Mitigating False Positives in High-Throughput Screening},
journal = {Journal of Medicinal Chemistry},
year = {2023},
volume = {66},
number = {14},
pages = {12345-12356},
doi = {10.1021/acs.jmedchem.3c00482},
url = {https://pubs.acs.org/doi/10.1021/acs.jmedchem.3c00482}
}
config_names:
- Liability
configs:
- config_name: Liability
data_files:
- Firefly Luciferase Interference.csv
- MSTI Thiol Interference.csv
- Nano Luciferase Interference.csv
- REDOX Interference.csv
dataset_info:
- config_name: Firefly Luciferase Interference
features:
- name: "REGID_1"
dtype: string
- name: "REGID_2"
dtype: string
- name: "REGID_3"
dtype: string
- name: "newSMILES_1"
dtype: string
- name: "newSMILES_2"
dtype: string
- name: "newSMILES_3"
dtype: string
- name: "log_AC50_M"
dtype: float64
- name: "Efficacy"
dtype: float64
- name: "CC-v2"
dtype: float64
- name: "Outcome"
dtype: int64
- name: "InChIKey"
dtype: string
- name: "ID"
dtype: float64
- name: "ROMol"
dtype: string
- config_name: MSTI Thiol Interference
features:
- name: "REGID_1"
dtype: string
- name: "REGID_2"
dtype: string
- name: "REGID_3"
dtype: string
- name: "newSMILES_1"
dtype: string
- name: "newSMILES_2"
dtype: string
- name: "newSMILES_3"
dtype: string
- name: "log_AC50_M"
dtype: float64
- name: "Efficacy"
dtype: float64
- name: "CC-v2"
dtype: float64
- name: "Outcome"
dtype: int64
- name: "InChIKey"
dtype: string
- name: "ID"
dtype: float64
- name: "ROMol"
dtype: string
- config_name: Nano Luciferase Interference
features:
- name: "REGID_1"
dtype: string
- name: "REGID_2"
dtype: string
- name: "REGID_3"
dtype: string
- name: "newSMILES_1"
dtype: string
- name: "newSMILES_2"
dtype: string
- name: "newSMILES_3"
dtype: string
- name: "log_AC50_M"
dtype: float64
- name: "Efficacy"
dtype: float64
- name: "CC-v2"
dtype: float64
- name: "Outcome"
dtype: int64
- name: "InChIKey"
dtype: string
- name: "ID"
dtype: float64
- name: "ROMol"
dtype: string
- config_name: REDOX Interference
features:
- name: "REGID_1"
dtype: string
- name: "REGID_2"
dtype: string
- name: "newSMILES_1"
dtype: string
- name: "newSMILES_2"
dtype: string
- name: "log_AC50_M"
dtype: float64
- name: "Efficacy"
dtype: float64
- name: "CC-v2"
dtype: float64
- name: "Outcome"
dtype: int64
- name: "InChIKey"
dtype: string
- name: "ID"
dtype: float64
- name: "ROMol"
dtype: string
---
# Liability (Computational Assessment of High-Throughput Screening Hits to Identify Artifact Compounds)
“Liability Predictor,” a free web tool to predict HTS artifacts has been created with HTS datasets for thiol reactivity, redox activity, and luciferase (firefly and nano) activity, and each dataset contains ~5000 compounds.
The datasets uploaded to our Hugging Face repository have been sanitized using RDKit and MolVS.
If you want to try these processes with the original dataset, please follow the instructions in the [Processing Script.py](https://huggingface.co/datasets/maomlab/Liability/tree/main/preprocessing%20scripts) file in the maomlab/Liability.
More specifically, they generated, curated, and integrated HTS data sets for thiol reactivity, redox activity, and luciferase (firefly and nano) activity and developed and validated quantitative structure–interference relationship (QSIR) models to predict these nuisance behaviors.
Both the models and the curated data sets were implemented in “Liability Predictor,” publicly available at https://liability.mml.unc.edu/. “Liability Predictor” may be used as part of chemical library design or for triaging HTS hits.
# Citation
J. Med. Chem. 2023, 66, 18, 12828–12839
Publication Date:September 7, 2023
https://doi.org/10.1021/acs.jmedchem.3c00482
|