--- license: apache-2.0 configs: - config_name: '2022' data_files: 2022.jsonl - config_name: '2023' data_files: 2023.jsonl - config_name: '2024' data_files: 2024.jsonl default: true dataset_info: features: - name: id dtype: string - name: exam dtype: string - name: IU dtype: bool - name: ledor dtype: bool - name: question dtype: string - name: alternatives sequence: string - name: figures sequence: string - name: description sequence: string - name: label dtype: string task_categories: - visual-question-answering - multiple-choice language: - pt pretty_name: ENEM size_categories: - n<1K --- The enem 2022 and enem 2023 datasets encompass all multiple-choice questions from the last two editions of the [Exame Nacional do Ensino Médio (ENEM)](https://www.gov.br/inep/pt-br/areas-de-atuacao/avaliacao-e-exames-educacionais/enem), the main standardized entrance examination adopted by Brazilian universities. The datasets have been created to allow the evaluation of both textual-only and textual-visual language models. To evaluate textual-only models, we incorporated into the datasets the textual descriptions of the images that appear in the questions' statements from the orange ENEM exam booklet, a particular booklet that offers accessibility to people with visual impairments. A repository containing the essential code for utilizing this dataset is accessible [here](https://github.com/piresramon/gpt-4-enem). If you use this dataset in your research, please acknowledge the papers below by citing them: ```bibtex @misc{pires2023evaluating, title={Evaluating GPT-4's Vision Capabilities on Brazilian University Admission Exams}, author={Ramon Pires and Thales Sales Almeida and Hugo Abonizio and Rodrigo Nogueira}, year={2023}, eprint={2311.14169}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` ```bibtex @misc{nunes2023evaluating, title={Evaluating GPT-3.5 and GPT-4 Models on Brazilian University Admission Exams}, author={Desnes Nunes and Ricardo Primi and Ramon Pires and Roberto Lotufo and Rodrigo Nogueira}, year={2023}, eprint={2303.17003}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```