Datasets:
File size: 13,152 Bytes
3ef9fa5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 |
""" English metaphor-annotated corpus. """
import os
import datasets
import logging
import re
import xml.etree.ElementTree as ET
from typing import List, Tuple, Dict
_CITATION = """\
@book{steen2010method,
title={A method for linguistic metaphor identification: From MIP to MIPVU},
author={Steen, Gerard and Dorst, Lettie and Herrmann, J. and Kaal, Anna and Krennmayr, Tina and Pasma, Trijntje},
volume={14},
year={2010},
publisher={John Benjamins Publishing}
}
"""
_DESCRIPTION = """\
The resource contains a selection of excerpts from BNC-Baby files that have been annotated for metaphor.
There are four registers, each comprising about 50,000 words: academic texts, news texts, fiction, and conversations.
Words have been separately labelled as participating in multi-word expressions (about 1.5%) or as discarded for
metaphor analysis (0.02%). Main categories include words that are related to metaphor (MRW), words that signal
metaphor (MFlag), and words that are not related to metaphor. For metaphor-related words, subdivisions have been made
between clear cases of metaphor versus borderline cases (WIDLII, When In Doubt, Leave It In). Another parameter of
metaphor-related words makes a distinction between direct metaphor, indirect metaphor, and implicit metaphor.
"""
_HOMEPAGE = "https://hdl.handle.net/20.500.12024/2541"
_LICENSE = "Available for non-commercial use on condition that the terms of the BNC Licence are observed and that " \
"this header is included in its entirety with any copy distributed."
_URLS = {
"vuamc": "https://ota.bodleian.ox.ac.uk/repository/xmlui/bitstream/handle/20.500.12024/2541/VUAMC.xml"
}
XML_NAMESPACE = "{http://www.w3.org/XML/1998/namespace}"
VICI_NAMESPACE = "{http://www.tei-c.org/ns/VICI}"
NA_STR = "N/A"
def namespace(element):
# https://stackoverflow.com/a/12946675
m = re.match(r'\{.*\}', element.tag)
return m.group(0) if m else ''
def resolve_recursively(el, ns):
words, lemmas, pos_tags, met_type, meta_tags = [], [], [], [], []
if el.tag.endswith("w"):
# A <w>ord may be
# (1) just text,
# (2) a metaphor (text fully enclosed in another seg)
# (3) a partial metaphor (optionally some text, followed by a seg, optionally followed by more text)
idx_word = 0
_w_text = el.text.strip() if el.text is not None else ""
if len(_w_text) > 0:
words.append(_w_text)
lemmas.append(_w_text)
pos_tags.append(el.attrib["type"])
meta_tags.append(NA_STR)
idx_word += 1
met_els = el.findall(f"{ns}seg")
for met_el in met_els:
parse_tail = True
if met_el.text is None:
# Handle encoding inconsistency where the metaphor is encoded without a closing tag (I hate this format)
# <w lemma="to" type="PRP"><seg function="mrw" type="met" vici:morph="n"/>to </w>
parse_tail = False
_w_text = met_el.tail.strip()
else:
_w_text = met_el.text.strip()
curr_met_type = met_el.attrib[f"function"]
# Let the user decide how they want to aggregate metaphors
if "type" in met_el.attrib:
curr_met_type = f"{curr_met_type}/{met_el.attrib['type']}"
if "subtype" in met_el.attrib:
curr_met_type = f"{curr_met_type}/{met_el.attrib['subtype']}"
words.append(_w_text)
lemmas.append(_w_text)
pos_tags.append(el.attrib["type"])
meta_tags.append(NA_STR)
met_type.append({"type": curr_met_type, "word_indices": [idx_word]})
idx_word += 1
if not parse_tail:
continue
_w_text = met_el.tail.strip() if met_el.tail is not None else ""
if len(_w_text) > 0:
words.append(_w_text)
lemmas.append(_w_text)
pos_tags.append(el.attrib["type"])
meta_tags.append(NA_STR)
idx_word += 1
elif el.tag.endswith("vocal"):
desc_el = el.find(f"{ns}desc")
description = desc_el.text.strip() if desc_el is not None else "unknown"
words.append("")
lemmas.append("")
pos_tags.append(NA_STR)
meta_tags.append(f"vocal/{description}") # vocal/<desc>
elif el.tag.endswith("gap"):
words.append("")
lemmas.append("")
pos_tags.append(NA_STR)
meta_tags.append(f"gap/{el.attrib.get('reason', 'unclear')}") # gap/<reason>
elif el.tag.endswith("incident"):
desc_el = el.find(f"{ns}desc")
description = desc_el.text.strip() if desc_el is not None else "unknown"
words.append("")
lemmas.append("")
pos_tags.append(NA_STR)
meta_tags.append(f"incident/{description}")
elif el.tag.endswith("shift"):
# TODO: this is not exposed
new_state = el.attrib.get("new", "normal")
children = list(iter(el))
# NOTE: Intentionally skip shifts like this, without children:
# <u who="#PS05E"> <shift new="crying"/> </u>
if len(children) > 0:
for w_el in el:
_words, _lemmas, _pos, _mets, _metas = resolve_recursively(w_el, ns=ns)
words.extend(_words)
lemmas.extend(_lemmas)
pos_tags.extend(_pos)
meta_tags.extend(_metas)
elif el.tag.endswith("seg"):
# Direct <seg> descendant of a sentence indicates truncated text
word_el = el.find(f"{ns}w")
words.append(word_el.text.strip())
lemmas.append(word_el.attrib["lemma"])
pos_tags.append(word_el.attrib["type"])
meta_tags.append(NA_STR)
elif el.tag.endswith("pause"):
words.append("")
lemmas.append("")
pos_tags.append(NA_STR)
meta_tags.append(f"pause")
elif el.tag.endswith("sic"):
for w_el in el:
_words, _lemmas, _pos, _mets, _metas = resolve_recursively(w_el, ns=ns)
words.extend(_words)
lemmas.extend(_lemmas)
pos_tags.extend(_pos)
meta_tags.extend(_metas)
elif el.tag.endswith("c"):
words.append(el.text.strip())
lemmas.append(el.text.strip())
pos_tags.append(el.attrib["type"])
meta_tags.append(NA_STR)
elif el.tag.endswith("pb"):
words.append("")
lemmas.append("")
pos_tags.append(NA_STR)
meta_tags.append(NA_STR)
elif el.tag.endswith("hi"):
# TODO: this is not exposed
rendition = el.attrib.get("rend", "normal")
for child_el in el:
_words, _lemmas, _pos, _mets, _metas = resolve_recursively(child_el, ns=ns)
words.extend(_words)
lemmas.extend(_lemmas)
pos_tags.extend(_pos)
meta_tags.extend(_metas)
elif el.tag.endswith("choice"):
sic_el = el.find(f"{ns}sic")
_words, _lemmas, _pos, _mets, _metas = resolve_recursively(sic_el, ns=ns)
words.extend(_words)
lemmas.extend(_lemmas)
pos_tags.extend(_pos)
met_type.extend(_mets)
meta_tags.extend(_metas)
elif el.tag.endswith(("ptr", "corr")):
# Intentionally skipping these:
# - no idea what <ptr> is
# - <sic> is being parsed instead of <corr>
pass
else:
logging.warning(f"Unrecognized child element: {el.tag}.\n"
f"If you are seeing this message, please open an issue on HF datasets.")
return words, lemmas, pos_tags, met_type, meta_tags
def parse_sent(sent_el, ns) -> Tuple[List[str], List[str], List[str], List[Dict], List[str]]:
all_words, all_lemmas, all_pos_tags, all_met_types, all_metas = [], [], [], [], []
for child_el in sent_el:
word, lemma, pos, mtype, meta = resolve_recursively(child_el, ns=ns)
# Need to remap local (index inside the word group) `word_indices` to global (index inside the sentence)
if len(mtype) > 0:
base = len(all_words)
mtype = list(map(lambda met_info: {
"type": met_info["type"],
"word_indices": list(map(lambda _i: base + _i, met_info["word_indices"]))
}, mtype))
all_words.extend(word)
all_lemmas.extend(lemma)
all_pos_tags.extend(pos)
all_met_types.extend(mtype)
all_metas.extend(meta)
return all_words, all_lemmas, all_pos_tags, all_met_types, all_metas
def parse_text_body(body_el, ns):
all_words: List[List] = []
all_lemmas: List[List] = []
all_pos: List[List] = []
all_met_type: List[List] = []
all_meta: List[List] = []
# Edge case#1: <s>entence
if body_el.tag.endswith("s"):
words, lemmas, pos_tags, met_types, meta_tags = parse_sent(body_el, ns=ns)
all_words.append(words)
all_lemmas.append(lemmas)
all_pos.append(pos_tags)
all_met_type.append(met_types)
all_meta.append(meta_tags)
# Edge case#2: <u>tterance either contains a sentence of metadata or contains multiple sentences as children
elif body_el.tag.endswith("u"):
children = list(filter(lambda _child: not _child.tag.endswith("ptr"), list(iter(body_el))))
is_utterance_sent = all(map(lambda _child: not _child.tag.endswith("s"), children))
if is_utterance_sent:
# <u> contains elements as children that are not a <s>entence, so it is itself considered a sentence
words, lemmas, pos_tags, met_types, meta_tags = parse_sent(body_el, ns=ns)
all_words.append(words)
all_lemmas.append(lemmas)
all_pos.append(pos_tags)
all_met_type.append(met_types)
all_meta.append(meta_tags)
else:
# <u> contains one or more of <s>entence children
for _child in children:
words, lemmas, pos_tags, met_types, meta_tags = parse_sent(_child, ns=ns)
all_words.append(words)
all_lemmas.append(lemmas)
all_pos.append(pos_tags)
all_met_type.append(met_types)
all_meta.append(meta_tags)
# Recursively go deeper through all the <p>aragraphs, <div>s, etc. until we reach the sentences
else:
for _child in body_el:
_c_word, _c_lemmas, _c_pos, _c_met, _c_meta = parse_text_body(_child, ns=ns)
all_words.extend(_c_word)
all_lemmas.extend(_c_lemmas)
all_pos.extend(_c_pos)
all_met_type.extend(_c_met)
all_meta.extend(_c_meta)
return all_words, all_lemmas, all_pos, all_met_type, all_meta
class VUAMC(datasets.GeneratorBasedBuilder):
"""English metaphor-annotated corpus. """
VERSION = datasets.Version("1.0.0")
def _info(self):
features = datasets.Features(
{
"document_name": datasets.Value("string"),
"words": datasets.Sequence(datasets.Value("string")),
"lemmas": datasets.Sequence(datasets.Value("string")),
"pos_tags": datasets.Sequence(datasets.Value("string")),
"met_type": [{
"type": datasets.Value("string"),
"word_indices": datasets.Sequence(datasets.Value("uint32"))
}],
"meta": datasets.Sequence(datasets.Value("string"))
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION
)
def _split_generators(self, dl_manager):
urls = _URLS["vuamc"]
data_path = dl_manager.download_and_extract(urls)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"file_path": os.path.join(data_path)}
)
]
def _generate_examples(self, file_path):
curr_doc = ET.parse(file_path)
root = curr_doc.getroot()
NAMESPACE = namespace(root)
root = root.find(f"{NAMESPACE}text")
idx_instance = 0
for idx_doc, doc in enumerate(root.iterfind(f".//{NAMESPACE}text")):
document_name = doc.attrib[f"{XML_NAMESPACE}id"]
body = doc.find(f"{NAMESPACE}body")
body_data = parse_text_body(body, ns=NAMESPACE)
for sent_words, sent_lemmas, sent_pos, sent_met_type, sent_meta in zip(*body_data):
# TODO: Due to some simplifications (not parsing certain metadata), some sentences may be empty
if len(sent_words) == 0:
continue
yield idx_instance, {
"document_name": document_name,
"words": sent_words,
"lemmas": sent_lemmas,
"pos_tags": sent_pos,
"met_type": sent_met_type,
"meta": sent_meta
}
idx_instance += 1
|