Datasets:
Matej Klemen
commited on
Commit
•
86dabe7
1
Parent(s):
3ef9fa5
Remove lemmas as the dataset is sometimes broken into morphemes, for which lemmas are not available
Browse files- dataset_infos.json +1 -1
- vuamc.py +15 -37
dataset_infos.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"default": {"description": "The resource contains a selection of excerpts from BNC-Baby files that have been annotated for metaphor. \nThere are four registers, each comprising about 50,000 words: academic texts, news texts, fiction, and conversations. \nWords have been separately labelled as participating in multi-word expressions (about 1.5%) or as discarded for \nmetaphor analysis (0.02%). Main categories include words that are related to metaphor (MRW), words that signal \nmetaphor (MFlag), and words that are not related to metaphor. For metaphor-related words, subdivisions have been made \nbetween clear cases of metaphor versus borderline cases (WIDLII, When In Doubt, Leave It In). Another parameter of \nmetaphor-related words makes a distinction between direct metaphor, indirect metaphor, and implicit metaphor.\n", "citation": "@book{steen2010method,\n title={A method for linguistic metaphor identification: From MIP to MIPVU},\n author={Steen, Gerard and Dorst, Lettie and Herrmann, J. and Kaal, Anna and Krennmayr, Tina and Pasma, Trijntje},\n volume={14},\n year={2010},\n publisher={John Benjamins Publishing}\n}\n", "homepage": "https://hdl.handle.net/20.500.12024/2541", "license": "Available for non-commercial use on condition that the terms of the BNC Licence are observed and that this header is included in its entirety with any copy distributed.", "features": {"document_name": {"dtype": "string", "id": null, "_type": "Value"}, "words": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "
|
|
|
1 |
+
{"default": {"description": "The resource contains a selection of excerpts from BNC-Baby files that have been annotated for metaphor. \nThere are four registers, each comprising about 50,000 words: academic texts, news texts, fiction, and conversations. \nWords have been separately labelled as participating in multi-word expressions (about 1.5%) or as discarded for \nmetaphor analysis (0.02%). Main categories include words that are related to metaphor (MRW), words that signal \nmetaphor (MFlag), and words that are not related to metaphor. For metaphor-related words, subdivisions have been made \nbetween clear cases of metaphor versus borderline cases (WIDLII, When In Doubt, Leave It In). Another parameter of \nmetaphor-related words makes a distinction between direct metaphor, indirect metaphor, and implicit metaphor.\n", "citation": "@book{steen2010method,\n title={A method for linguistic metaphor identification: From MIP to MIPVU},\n author={Steen, Gerard and Dorst, Lettie and Herrmann, J. and Kaal, Anna and Krennmayr, Tina and Pasma, Trijntje},\n volume={14},\n year={2010},\n publisher={John Benjamins Publishing}\n}\n", "homepage": "https://hdl.handle.net/20.500.12024/2541", "license": "Available for non-commercial use on condition that the terms of the BNC Licence are observed and that this header is included in its entirety with any copy distributed.", "features": {"document_name": {"dtype": "string", "id": null, "_type": "Value"}, "words": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "pos_tags": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "met_type": [{"type": {"dtype": "string", "id": null, "_type": "Value"}, "word_indices": {"feature": {"dtype": "uint32", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}], "meta": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "vuamc", "config_name": "default", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 6495566, "num_examples": 16740, "dataset_name": "vuamc"}}, "download_checksums": {"https://ota.bodleian.ox.ac.uk/repository/xmlui/bitstream/handle/20.500.12024/2541/VUAMC.xml": {"num_bytes": 16820946, "checksum": "0ac1a77cc1879aa0c87e2879481d0e1e3f28e36b1701893c096a33ff11aa6e0d"}}, "download_size": 16820946, "post_processing_size": null, "dataset_size": 6495566, "size_in_bytes": 23316512}}
|
vuamc.py
CHANGED
@@ -52,7 +52,7 @@ def namespace(element):
|
|
52 |
|
53 |
|
54 |
def resolve_recursively(el, ns):
|
55 |
-
words,
|
56 |
|
57 |
if el.tag.endswith("w"):
|
58 |
# A <w>ord may be
|
@@ -63,7 +63,6 @@ def resolve_recursively(el, ns):
|
|
63 |
_w_text = el.text.strip() if el.text is not None else ""
|
64 |
if len(_w_text) > 0:
|
65 |
words.append(_w_text)
|
66 |
-
lemmas.append(_w_text)
|
67 |
pos_tags.append(el.attrib["type"])
|
68 |
meta_tags.append(NA_STR)
|
69 |
idx_word += 1
|
@@ -89,7 +88,6 @@ def resolve_recursively(el, ns):
|
|
89 |
curr_met_type = f"{curr_met_type}/{met_el.attrib['subtype']}"
|
90 |
|
91 |
words.append(_w_text)
|
92 |
-
lemmas.append(_w_text)
|
93 |
pos_tags.append(el.attrib["type"])
|
94 |
meta_tags.append(NA_STR)
|
95 |
met_type.append({"type": curr_met_type, "word_indices": [idx_word]})
|
@@ -101,7 +99,6 @@ def resolve_recursively(el, ns):
|
|
101 |
_w_text = met_el.tail.strip() if met_el.tail is not None else ""
|
102 |
if len(_w_text) > 0:
|
103 |
words.append(_w_text)
|
104 |
-
lemmas.append(_w_text)
|
105 |
pos_tags.append(el.attrib["type"])
|
106 |
meta_tags.append(NA_STR)
|
107 |
idx_word += 1
|
@@ -111,13 +108,11 @@ def resolve_recursively(el, ns):
|
|
111 |
description = desc_el.text.strip() if desc_el is not None else "unknown"
|
112 |
|
113 |
words.append("")
|
114 |
-
lemmas.append("")
|
115 |
pos_tags.append(NA_STR)
|
116 |
meta_tags.append(f"vocal/{description}") # vocal/<desc>
|
117 |
|
118 |
elif el.tag.endswith("gap"):
|
119 |
words.append("")
|
120 |
-
lemmas.append("")
|
121 |
pos_tags.append(NA_STR)
|
122 |
meta_tags.append(f"gap/{el.attrib.get('reason', 'unclear')}") # gap/<reason>
|
123 |
|
@@ -126,7 +121,6 @@ def resolve_recursively(el, ns):
|
|
126 |
description = desc_el.text.strip() if desc_el is not None else "unknown"
|
127 |
|
128 |
words.append("")
|
129 |
-
lemmas.append("")
|
130 |
pos_tags.append(NA_STR)
|
131 |
meta_tags.append(f"incident/{description}")
|
132 |
|
@@ -138,9 +132,8 @@ def resolve_recursively(el, ns):
|
|
138 |
# <u who="#PS05E"> <shift new="crying"/> </u>
|
139 |
if len(children) > 0:
|
140 |
for w_el in el:
|
141 |
-
_words,
|
142 |
words.extend(_words)
|
143 |
-
lemmas.extend(_lemmas)
|
144 |
pos_tags.extend(_pos)
|
145 |
meta_tags.extend(_metas)
|
146 |
|
@@ -149,33 +142,28 @@ def resolve_recursively(el, ns):
|
|
149 |
word_el = el.find(f"{ns}w")
|
150 |
|
151 |
words.append(word_el.text.strip())
|
152 |
-
lemmas.append(word_el.attrib["lemma"])
|
153 |
pos_tags.append(word_el.attrib["type"])
|
154 |
meta_tags.append(NA_STR)
|
155 |
|
156 |
elif el.tag.endswith("pause"):
|
157 |
words.append("")
|
158 |
-
lemmas.append("")
|
159 |
pos_tags.append(NA_STR)
|
160 |
meta_tags.append(f"pause")
|
161 |
|
162 |
elif el.tag.endswith("sic"):
|
163 |
for w_el in el:
|
164 |
-
_words,
|
165 |
words.extend(_words)
|
166 |
-
lemmas.extend(_lemmas)
|
167 |
pos_tags.extend(_pos)
|
168 |
meta_tags.extend(_metas)
|
169 |
|
170 |
elif el.tag.endswith("c"):
|
171 |
words.append(el.text.strip())
|
172 |
-
lemmas.append(el.text.strip())
|
173 |
pos_tags.append(el.attrib["type"])
|
174 |
meta_tags.append(NA_STR)
|
175 |
|
176 |
elif el.tag.endswith("pb"):
|
177 |
words.append("")
|
178 |
-
lemmas.append("")
|
179 |
pos_tags.append(NA_STR)
|
180 |
meta_tags.append(NA_STR)
|
181 |
|
@@ -184,17 +172,15 @@ def resolve_recursively(el, ns):
|
|
184 |
rendition = el.attrib.get("rend", "normal")
|
185 |
|
186 |
for child_el in el:
|
187 |
-
_words,
|
188 |
words.extend(_words)
|
189 |
-
lemmas.extend(_lemmas)
|
190 |
pos_tags.extend(_pos)
|
191 |
meta_tags.extend(_metas)
|
192 |
|
193 |
elif el.tag.endswith("choice"):
|
194 |
sic_el = el.find(f"{ns}sic")
|
195 |
-
_words,
|
196 |
words.extend(_words)
|
197 |
-
lemmas.extend(_lemmas)
|
198 |
pos_tags.extend(_pos)
|
199 |
met_type.extend(_mets)
|
200 |
meta_tags.extend(_metas)
|
@@ -209,13 +195,13 @@ def resolve_recursively(el, ns):
|
|
209 |
logging.warning(f"Unrecognized child element: {el.tag}.\n"
|
210 |
f"If you are seeing this message, please open an issue on HF datasets.")
|
211 |
|
212 |
-
return words,
|
213 |
|
214 |
|
215 |
def parse_sent(sent_el, ns) -> Tuple[List[str], List[str], List[str], List[Dict], List[str]]:
|
216 |
-
all_words,
|
217 |
for child_el in sent_el:
|
218 |
-
word,
|
219 |
# Need to remap local (index inside the word group) `word_indices` to global (index inside the sentence)
|
220 |
if len(mtype) > 0:
|
221 |
base = len(all_words)
|
@@ -225,26 +211,23 @@ def parse_sent(sent_el, ns) -> Tuple[List[str], List[str], List[str], List[Dict]
|
|
225 |
}, mtype))
|
226 |
|
227 |
all_words.extend(word)
|
228 |
-
all_lemmas.extend(lemma)
|
229 |
all_pos_tags.extend(pos)
|
230 |
all_met_types.extend(mtype)
|
231 |
all_metas.extend(meta)
|
232 |
|
233 |
-
return all_words,
|
234 |
|
235 |
|
236 |
def parse_text_body(body_el, ns):
|
237 |
all_words: List[List] = []
|
238 |
-
all_lemmas: List[List] = []
|
239 |
all_pos: List[List] = []
|
240 |
all_met_type: List[List] = []
|
241 |
all_meta: List[List] = []
|
242 |
|
243 |
# Edge case#1: <s>entence
|
244 |
if body_el.tag.endswith("s"):
|
245 |
-
words,
|
246 |
all_words.append(words)
|
247 |
-
all_lemmas.append(lemmas)
|
248 |
all_pos.append(pos_tags)
|
249 |
all_met_type.append(met_types)
|
250 |
all_meta.append(meta_tags)
|
@@ -255,18 +238,16 @@ def parse_text_body(body_el, ns):
|
|
255 |
is_utterance_sent = all(map(lambda _child: not _child.tag.endswith("s"), children))
|
256 |
if is_utterance_sent:
|
257 |
# <u> contains elements as children that are not a <s>entence, so it is itself considered a sentence
|
258 |
-
words,
|
259 |
all_words.append(words)
|
260 |
-
all_lemmas.append(lemmas)
|
261 |
all_pos.append(pos_tags)
|
262 |
all_met_type.append(met_types)
|
263 |
all_meta.append(meta_tags)
|
264 |
else:
|
265 |
# <u> contains one or more of <s>entence children
|
266 |
for _child in children:
|
267 |
-
words,
|
268 |
all_words.append(words)
|
269 |
-
all_lemmas.append(lemmas)
|
270 |
all_pos.append(pos_tags)
|
271 |
all_met_type.append(met_types)
|
272 |
all_meta.append(meta_tags)
|
@@ -274,15 +255,14 @@ def parse_text_body(body_el, ns):
|
|
274 |
# Recursively go deeper through all the <p>aragraphs, <div>s, etc. until we reach the sentences
|
275 |
else:
|
276 |
for _child in body_el:
|
277 |
-
_c_word,
|
278 |
|
279 |
all_words.extend(_c_word)
|
280 |
-
all_lemmas.extend(_c_lemmas)
|
281 |
all_pos.extend(_c_pos)
|
282 |
all_met_type.extend(_c_met)
|
283 |
all_meta.extend(_c_meta)
|
284 |
|
285 |
-
return all_words,
|
286 |
|
287 |
|
288 |
class VUAMC(datasets.GeneratorBasedBuilder):
|
@@ -295,7 +275,6 @@ class VUAMC(datasets.GeneratorBasedBuilder):
|
|
295 |
{
|
296 |
"document_name": datasets.Value("string"),
|
297 |
"words": datasets.Sequence(datasets.Value("string")),
|
298 |
-
"lemmas": datasets.Sequence(datasets.Value("string")),
|
299 |
"pos_tags": datasets.Sequence(datasets.Value("string")),
|
300 |
"met_type": [{
|
301 |
"type": datasets.Value("string"),
|
@@ -335,7 +314,7 @@ class VUAMC(datasets.GeneratorBasedBuilder):
|
|
335 |
body = doc.find(f"{NAMESPACE}body")
|
336 |
body_data = parse_text_body(body, ns=NAMESPACE)
|
337 |
|
338 |
-
for sent_words,
|
339 |
# TODO: Due to some simplifications (not parsing certain metadata), some sentences may be empty
|
340 |
if len(sent_words) == 0:
|
341 |
continue
|
@@ -343,7 +322,6 @@ class VUAMC(datasets.GeneratorBasedBuilder):
|
|
343 |
yield idx_instance, {
|
344 |
"document_name": document_name,
|
345 |
"words": sent_words,
|
346 |
-
"lemmas": sent_lemmas,
|
347 |
"pos_tags": sent_pos,
|
348 |
"met_type": sent_met_type,
|
349 |
"meta": sent_meta
|
|
|
52 |
|
53 |
|
54 |
def resolve_recursively(el, ns):
|
55 |
+
words, pos_tags, met_type, meta_tags = [], [], [], []
|
56 |
|
57 |
if el.tag.endswith("w"):
|
58 |
# A <w>ord may be
|
|
|
63 |
_w_text = el.text.strip() if el.text is not None else ""
|
64 |
if len(_w_text) > 0:
|
65 |
words.append(_w_text)
|
|
|
66 |
pos_tags.append(el.attrib["type"])
|
67 |
meta_tags.append(NA_STR)
|
68 |
idx_word += 1
|
|
|
88 |
curr_met_type = f"{curr_met_type}/{met_el.attrib['subtype']}"
|
89 |
|
90 |
words.append(_w_text)
|
|
|
91 |
pos_tags.append(el.attrib["type"])
|
92 |
meta_tags.append(NA_STR)
|
93 |
met_type.append({"type": curr_met_type, "word_indices": [idx_word]})
|
|
|
99 |
_w_text = met_el.tail.strip() if met_el.tail is not None else ""
|
100 |
if len(_w_text) > 0:
|
101 |
words.append(_w_text)
|
|
|
102 |
pos_tags.append(el.attrib["type"])
|
103 |
meta_tags.append(NA_STR)
|
104 |
idx_word += 1
|
|
|
108 |
description = desc_el.text.strip() if desc_el is not None else "unknown"
|
109 |
|
110 |
words.append("")
|
|
|
111 |
pos_tags.append(NA_STR)
|
112 |
meta_tags.append(f"vocal/{description}") # vocal/<desc>
|
113 |
|
114 |
elif el.tag.endswith("gap"):
|
115 |
words.append("")
|
|
|
116 |
pos_tags.append(NA_STR)
|
117 |
meta_tags.append(f"gap/{el.attrib.get('reason', 'unclear')}") # gap/<reason>
|
118 |
|
|
|
121 |
description = desc_el.text.strip() if desc_el is not None else "unknown"
|
122 |
|
123 |
words.append("")
|
|
|
124 |
pos_tags.append(NA_STR)
|
125 |
meta_tags.append(f"incident/{description}")
|
126 |
|
|
|
132 |
# <u who="#PS05E"> <shift new="crying"/> </u>
|
133 |
if len(children) > 0:
|
134 |
for w_el in el:
|
135 |
+
_words, _pos, _mets, _metas = resolve_recursively(w_el, ns=ns)
|
136 |
words.extend(_words)
|
|
|
137 |
pos_tags.extend(_pos)
|
138 |
meta_tags.extend(_metas)
|
139 |
|
|
|
142 |
word_el = el.find(f"{ns}w")
|
143 |
|
144 |
words.append(word_el.text.strip())
|
|
|
145 |
pos_tags.append(word_el.attrib["type"])
|
146 |
meta_tags.append(NA_STR)
|
147 |
|
148 |
elif el.tag.endswith("pause"):
|
149 |
words.append("")
|
|
|
150 |
pos_tags.append(NA_STR)
|
151 |
meta_tags.append(f"pause")
|
152 |
|
153 |
elif el.tag.endswith("sic"):
|
154 |
for w_el in el:
|
155 |
+
_words, _pos, _mets, _metas = resolve_recursively(w_el, ns=ns)
|
156 |
words.extend(_words)
|
|
|
157 |
pos_tags.extend(_pos)
|
158 |
meta_tags.extend(_metas)
|
159 |
|
160 |
elif el.tag.endswith("c"):
|
161 |
words.append(el.text.strip())
|
|
|
162 |
pos_tags.append(el.attrib["type"])
|
163 |
meta_tags.append(NA_STR)
|
164 |
|
165 |
elif el.tag.endswith("pb"):
|
166 |
words.append("")
|
|
|
167 |
pos_tags.append(NA_STR)
|
168 |
meta_tags.append(NA_STR)
|
169 |
|
|
|
172 |
rendition = el.attrib.get("rend", "normal")
|
173 |
|
174 |
for child_el in el:
|
175 |
+
_words, _pos, _mets, _metas = resolve_recursively(child_el, ns=ns)
|
176 |
words.extend(_words)
|
|
|
177 |
pos_tags.extend(_pos)
|
178 |
meta_tags.extend(_metas)
|
179 |
|
180 |
elif el.tag.endswith("choice"):
|
181 |
sic_el = el.find(f"{ns}sic")
|
182 |
+
_words, _pos, _mets, _metas = resolve_recursively(sic_el, ns=ns)
|
183 |
words.extend(_words)
|
|
|
184 |
pos_tags.extend(_pos)
|
185 |
met_type.extend(_mets)
|
186 |
meta_tags.extend(_metas)
|
|
|
195 |
logging.warning(f"Unrecognized child element: {el.tag}.\n"
|
196 |
f"If you are seeing this message, please open an issue on HF datasets.")
|
197 |
|
198 |
+
return words, pos_tags, met_type, meta_tags
|
199 |
|
200 |
|
201 |
def parse_sent(sent_el, ns) -> Tuple[List[str], List[str], List[str], List[Dict], List[str]]:
|
202 |
+
all_words, all_pos_tags, all_met_types, all_metas = [], [], [], []
|
203 |
for child_el in sent_el:
|
204 |
+
word, pos, mtype, meta = resolve_recursively(child_el, ns=ns)
|
205 |
# Need to remap local (index inside the word group) `word_indices` to global (index inside the sentence)
|
206 |
if len(mtype) > 0:
|
207 |
base = len(all_words)
|
|
|
211 |
}, mtype))
|
212 |
|
213 |
all_words.extend(word)
|
|
|
214 |
all_pos_tags.extend(pos)
|
215 |
all_met_types.extend(mtype)
|
216 |
all_metas.extend(meta)
|
217 |
|
218 |
+
return all_words, all_pos_tags, all_met_types, all_metas
|
219 |
|
220 |
|
221 |
def parse_text_body(body_el, ns):
|
222 |
all_words: List[List] = []
|
|
|
223 |
all_pos: List[List] = []
|
224 |
all_met_type: List[List] = []
|
225 |
all_meta: List[List] = []
|
226 |
|
227 |
# Edge case#1: <s>entence
|
228 |
if body_el.tag.endswith("s"):
|
229 |
+
words, pos_tags, met_types, meta_tags = parse_sent(body_el, ns=ns)
|
230 |
all_words.append(words)
|
|
|
231 |
all_pos.append(pos_tags)
|
232 |
all_met_type.append(met_types)
|
233 |
all_meta.append(meta_tags)
|
|
|
238 |
is_utterance_sent = all(map(lambda _child: not _child.tag.endswith("s"), children))
|
239 |
if is_utterance_sent:
|
240 |
# <u> contains elements as children that are not a <s>entence, so it is itself considered a sentence
|
241 |
+
words, pos_tags, met_types, meta_tags = parse_sent(body_el, ns=ns)
|
242 |
all_words.append(words)
|
|
|
243 |
all_pos.append(pos_tags)
|
244 |
all_met_type.append(met_types)
|
245 |
all_meta.append(meta_tags)
|
246 |
else:
|
247 |
# <u> contains one or more of <s>entence children
|
248 |
for _child in children:
|
249 |
+
words, pos_tags, met_types, meta_tags = parse_sent(_child, ns=ns)
|
250 |
all_words.append(words)
|
|
|
251 |
all_pos.append(pos_tags)
|
252 |
all_met_type.append(met_types)
|
253 |
all_meta.append(meta_tags)
|
|
|
255 |
# Recursively go deeper through all the <p>aragraphs, <div>s, etc. until we reach the sentences
|
256 |
else:
|
257 |
for _child in body_el:
|
258 |
+
_c_word, _c_pos, _c_met, _c_meta = parse_text_body(_child, ns=ns)
|
259 |
|
260 |
all_words.extend(_c_word)
|
|
|
261 |
all_pos.extend(_c_pos)
|
262 |
all_met_type.extend(_c_met)
|
263 |
all_meta.extend(_c_meta)
|
264 |
|
265 |
+
return all_words, all_pos, all_met_type, all_meta
|
266 |
|
267 |
|
268 |
class VUAMC(datasets.GeneratorBasedBuilder):
|
|
|
275 |
{
|
276 |
"document_name": datasets.Value("string"),
|
277 |
"words": datasets.Sequence(datasets.Value("string")),
|
|
|
278 |
"pos_tags": datasets.Sequence(datasets.Value("string")),
|
279 |
"met_type": [{
|
280 |
"type": datasets.Value("string"),
|
|
|
314 |
body = doc.find(f"{NAMESPACE}body")
|
315 |
body_data = parse_text_body(body, ns=NAMESPACE)
|
316 |
|
317 |
+
for sent_words, sent_pos, sent_met_type, sent_meta in zip(*body_data):
|
318 |
# TODO: Due to some simplifications (not parsing certain metadata), some sentences may be empty
|
319 |
if len(sent_words) == 0:
|
320 |
continue
|
|
|
322 |
yield idx_instance, {
|
323 |
"document_name": document_name,
|
324 |
"words": sent_words,
|
|
|
325 |
"pos_tags": sent_pos,
|
326 |
"met_type": sent_met_type,
|
327 |
"meta": sent_meta
|