""" English metaphor-annotated corpus. """ import os import datasets import logging import re import xml.etree.ElementTree as ET from typing import List, Tuple, Dict _CITATION = """\ @book{steen2010method, title={A method for linguistic metaphor identification: From MIP to MIPVU}, author={Steen, Gerard and Dorst, Lettie and Herrmann, J. and Kaal, Anna and Krennmayr, Tina and Pasma, Trijntje}, volume={14}, year={2010}, publisher={John Benjamins Publishing} } """ _DESCRIPTION = """\ The resource contains a selection of excerpts from BNC-Baby files that have been annotated for metaphor. There are four registers, each comprising about 50,000 words: academic texts, news texts, fiction, and conversations. Words have been separately labelled as participating in multi-word expressions (about 1.5%) or as discarded for metaphor analysis (0.02%). Main categories include words that are related to metaphor (MRW), words that signal metaphor (MFlag), and words that are not related to metaphor. For metaphor-related words, subdivisions have been made between clear cases of metaphor versus borderline cases (WIDLII, When In Doubt, Leave It In). Another parameter of metaphor-related words makes a distinction between direct metaphor, indirect metaphor, and implicit metaphor. """ _HOMEPAGE = "https://hdl.handle.net/20.500.12024/2541" _LICENSE = "Available for non-commercial use on condition that the terms of the BNC Licence are observed and that " \ "this header is included in its entirety with any copy distributed." _URLS = { "vuamc": "https://ota.bodleian.ox.ac.uk/repository/xmlui/bitstream/handle/20.500.12024/2541/VUAMC.xml" } XML_NAMESPACE = "{http://www.w3.org/XML/1998/namespace}" VICI_NAMESPACE = "{http://www.tei-c.org/ns/VICI}" NA_STR = "N/A" def namespace(element): # https://stackoverflow.com/a/12946675 m = re.match(r'\{.*\}', element.tag) return m.group(0) if m else '' def resolve_recursively(el, ns): words, lemmas, pos_tags, met_type, meta_tags = [], [], [], [], [] if el.tag.endswith("w"): # A ord may be # (1) just text, # (2) a metaphor (text fully enclosed in another seg) # (3) a partial metaphor (optionally some text, followed by a seg, optionally followed by more text) idx_word = 0 _w_text = el.text.strip() if el.text is not None else "" if len(_w_text) > 0: words.append(_w_text) lemmas.append(_w_text) pos_tags.append(el.attrib["type"]) meta_tags.append(NA_STR) idx_word += 1 met_els = el.findall(f"{ns}seg") for met_el in met_els: parse_tail = True if met_el.text is None: # Handle encoding inconsistency where the metaphor is encoded without a closing tag (I hate this format) # to parse_tail = False _w_text = met_el.tail.strip() else: _w_text = met_el.text.strip() curr_met_type = met_el.attrib[f"function"] # Let the user decide how they want to aggregate metaphors if "type" in met_el.attrib: curr_met_type = f"{curr_met_type}/{met_el.attrib['type']}" if "subtype" in met_el.attrib: curr_met_type = f"{curr_met_type}/{met_el.attrib['subtype']}" words.append(_w_text) lemmas.append(_w_text) pos_tags.append(el.attrib["type"]) meta_tags.append(NA_STR) met_type.append({"type": curr_met_type, "word_indices": [idx_word]}) idx_word += 1 if not parse_tail: continue _w_text = met_el.tail.strip() if met_el.tail is not None else "" if len(_w_text) > 0: words.append(_w_text) lemmas.append(_w_text) pos_tags.append(el.attrib["type"]) meta_tags.append(NA_STR) idx_word += 1 elif el.tag.endswith("vocal"): desc_el = el.find(f"{ns}desc") description = desc_el.text.strip() if desc_el is not None else "unknown" words.append("") lemmas.append("") pos_tags.append(NA_STR) meta_tags.append(f"vocal/{description}") # vocal/ elif el.tag.endswith("gap"): words.append("") lemmas.append("") pos_tags.append(NA_STR) meta_tags.append(f"gap/{el.attrib.get('reason', 'unclear')}") # gap/ elif el.tag.endswith("incident"): desc_el = el.find(f"{ns}desc") description = desc_el.text.strip() if desc_el is not None else "unknown" words.append("") lemmas.append("") pos_tags.append(NA_STR) meta_tags.append(f"incident/{description}") elif el.tag.endswith("shift"): # TODO: this is not exposed new_state = el.attrib.get("new", "normal") children = list(iter(el)) # NOTE: Intentionally skip shifts like this, without children: # if len(children) > 0: for w_el in el: _words, _lemmas, _pos, _mets, _metas = resolve_recursively(w_el, ns=ns) words.extend(_words) lemmas.extend(_lemmas) pos_tags.extend(_pos) meta_tags.extend(_metas) elif el.tag.endswith("seg"): # Direct descendant of a sentence indicates truncated text word_el = el.find(f"{ns}w") words.append(word_el.text.strip()) lemmas.append(word_el.attrib["lemma"]) pos_tags.append(word_el.attrib["type"]) meta_tags.append(NA_STR) elif el.tag.endswith("pause"): words.append("") lemmas.append("") pos_tags.append(NA_STR) meta_tags.append(f"pause") elif el.tag.endswith("sic"): for w_el in el: _words, _lemmas, _pos, _mets, _metas = resolve_recursively(w_el, ns=ns) words.extend(_words) lemmas.extend(_lemmas) pos_tags.extend(_pos) meta_tags.extend(_metas) elif el.tag.endswith("c"): words.append(el.text.strip()) lemmas.append(el.text.strip()) pos_tags.append(el.attrib["type"]) meta_tags.append(NA_STR) elif el.tag.endswith("pb"): words.append("") lemmas.append("") pos_tags.append(NA_STR) meta_tags.append(NA_STR) elif el.tag.endswith("hi"): # TODO: this is not exposed rendition = el.attrib.get("rend", "normal") for child_el in el: _words, _lemmas, _pos, _mets, _metas = resolve_recursively(child_el, ns=ns) words.extend(_words) lemmas.extend(_lemmas) pos_tags.extend(_pos) meta_tags.extend(_metas) elif el.tag.endswith("choice"): sic_el = el.find(f"{ns}sic") _words, _lemmas, _pos, _mets, _metas = resolve_recursively(sic_el, ns=ns) words.extend(_words) lemmas.extend(_lemmas) pos_tags.extend(_pos) met_type.extend(_mets) meta_tags.extend(_metas) elif el.tag.endswith(("ptr", "corr")): # Intentionally skipping these: # - no idea what is # - is being parsed instead of pass else: logging.warning(f"Unrecognized child element: {el.tag}.\n" f"If you are seeing this message, please open an issue on HF datasets.") return words, lemmas, pos_tags, met_type, meta_tags def parse_sent(sent_el, ns) -> Tuple[List[str], List[str], List[str], List[Dict], List[str]]: all_words, all_lemmas, all_pos_tags, all_met_types, all_metas = [], [], [], [], [] for child_el in sent_el: word, lemma, pos, mtype, meta = resolve_recursively(child_el, ns=ns) # Need to remap local (index inside the word group) `word_indices` to global (index inside the sentence) if len(mtype) > 0: base = len(all_words) mtype = list(map(lambda met_info: { "type": met_info["type"], "word_indices": list(map(lambda _i: base + _i, met_info["word_indices"])) }, mtype)) all_words.extend(word) all_lemmas.extend(lemma) all_pos_tags.extend(pos) all_met_types.extend(mtype) all_metas.extend(meta) return all_words, all_lemmas, all_pos_tags, all_met_types, all_metas def parse_text_body(body_el, ns): all_words: List[List] = [] all_lemmas: List[List] = [] all_pos: List[List] = [] all_met_type: List[List] = [] all_meta: List[List] = [] # Edge case#1: entence if body_el.tag.endswith("s"): words, lemmas, pos_tags, met_types, meta_tags = parse_sent(body_el, ns=ns) all_words.append(words) all_lemmas.append(lemmas) all_pos.append(pos_tags) all_met_type.append(met_types) all_meta.append(meta_tags) # Edge case#2: tterance either contains a sentence of metadata or contains multiple sentences as children elif body_el.tag.endswith("u"): children = list(filter(lambda _child: not _child.tag.endswith("ptr"), list(iter(body_el)))) is_utterance_sent = all(map(lambda _child: not _child.tag.endswith("s"), children)) if is_utterance_sent: # contains elements as children that are not a entence, so it is itself considered a sentence words, lemmas, pos_tags, met_types, meta_tags = parse_sent(body_el, ns=ns) all_words.append(words) all_lemmas.append(lemmas) all_pos.append(pos_tags) all_met_type.append(met_types) all_meta.append(meta_tags) else: # contains one or more of entence children for _child in children: words, lemmas, pos_tags, met_types, meta_tags = parse_sent(_child, ns=ns) all_words.append(words) all_lemmas.append(lemmas) all_pos.append(pos_tags) all_met_type.append(met_types) all_meta.append(meta_tags) # Recursively go deeper through all the

aragraphs,

s, etc. until we reach the sentences else: for _child in body_el: _c_word, _c_lemmas, _c_pos, _c_met, _c_meta = parse_text_body(_child, ns=ns) all_words.extend(_c_word) all_lemmas.extend(_c_lemmas) all_pos.extend(_c_pos) all_met_type.extend(_c_met) all_meta.extend(_c_meta) return all_words, all_lemmas, all_pos, all_met_type, all_meta class VUAMC(datasets.GeneratorBasedBuilder): """English metaphor-annotated corpus. """ VERSION = datasets.Version("1.0.0") def _info(self): features = datasets.Features( { "document_name": datasets.Value("string"), "words": datasets.Sequence(datasets.Value("string")), "lemmas": datasets.Sequence(datasets.Value("string")), "pos_tags": datasets.Sequence(datasets.Value("string")), "met_type": [{ "type": datasets.Value("string"), "word_indices": datasets.Sequence(datasets.Value("uint32")) }], "meta": datasets.Sequence(datasets.Value("string")) } ) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION ) def _split_generators(self, dl_manager): urls = _URLS["vuamc"] data_path = dl_manager.download_and_extract(urls) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={"file_path": os.path.join(data_path)} ) ] def _generate_examples(self, file_path): curr_doc = ET.parse(file_path) root = curr_doc.getroot() NAMESPACE = namespace(root) root = root.find(f"{NAMESPACE}text") idx_instance = 0 for idx_doc, doc in enumerate(root.iterfind(f".//{NAMESPACE}text")): document_name = doc.attrib[f"{XML_NAMESPACE}id"] body = doc.find(f"{NAMESPACE}body") body_data = parse_text_body(body, ns=NAMESPACE) for sent_words, sent_lemmas, sent_pos, sent_met_type, sent_meta in zip(*body_data): # TODO: Due to some simplifications (not parsing certain metadata), some sentences may be empty if len(sent_words) == 0: continue yield idx_instance, { "document_name": document_name, "words": sent_words, "lemmas": sent_lemmas, "pos_tags": sent_pos, "met_type": sent_met_type, "meta": sent_meta } idx_instance += 1