File size: 6,687 Bytes
d788aee
 
9fa8b98
 
9c82d79
 
d788aee
9fa8b98
 
f648741
32aeb1c
f648741
2a3d9a6
 
77b7065
aa2072f
1f359f5
aa2072f
a1910f2
d28e7c4
aa2072f
77b7065
1f359f5
f648741
d28e7c4
1f359f5
9ee7b4f
 
77b7065
 
 
 
 
9ee7b4f
f648741
 
77b7065
c34da28
d457e61
 
 
 
 
77b7065
 
1f359f5
e2666ff
 
77b7065
 
 
4b2a6f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb034c4
 
 
 
4b2a6f3
bb034c4
 
abb4956
42da79f
 
 
bb034c4
 
4b2a6f3
 
 
 
 
 
 
 
 
 
 
 
57cd0a9
4050552
 
 
1f359f5
 
6e4503c
 
4050552
4c265d2
 
 
315cb18
4b2a6f3
6e4503c
4c265d2
 
 
315cb18
 
4c265d2
10d2c55
315cb18
4c265d2
315cb18
 
4c265d2
 
 
10d2c55
315cb18
 
 
 
 
bb034c4
 
 
 
6e4503c
bb034c4
 
abb4956
42da79f
 
 
bb034c4
 
6e4503c
 
 
 
 
 
4c265d2
 
 
 
 
 
 
 
 
 
315cb18
4c265d2
 
315cb18
 
 
 
d86e86c
315cb18
9b08228
315cb18
 
d86e86c
 
607d444
 
 
 
4c265d2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
---
license: cc0-1.0
tags:
- chess
- stockfish
pretty_name: Lichess Games With Stockfish Analysis
---
# Condensed Lichess Database
This dataset is a condensed version of the Lichess database.
It only includes games for which Stockfish evaluations were available.
Currently, the dataset contains the entire year 2023, which consists of >100M games and >2B positions.
Games are stored in a format that is much faster to process than the original PGN data.
<br>
<br>
Requirements:
```
    pip install zstandard python-chess datasets
```

<br>

# Quick Guide
In the following, I explain the data format and how to use the dataset. At the end, you find a complete example script.

### 1. Loading The Dataset
You can stream the data without storing it locally (~100 GB currently). The dataset requires `trust_remote_code=True` to execute the [custom data loading script](https://huggingface.co/datasets/mauricett/lichess_sf/blob/main/lichess_sf.py), which is necessary to decompress the files.
See [HuggingFace's documentation](https://huggingface.co/docs/datasets/main/en/load_hub#remote-code) if you're unsure.
```py
# Load dataset.
dataset = load_dataset(path="mauricett/lichess_sf",
                       split="train",
                       streaming=True,
                       trust_remote_code=True)
```
<br>

### 2. Data Format
The following definitions are important to understand. Please reread this section slowly and correctly when you have to decide how to draw FENs, moves and scores from the dataset. Let's draw a single sample and discuss it.

```py
example = next(iter(dataset))
```

A single sample from the dataset contains one complete chess game as a dictionary. The dictionary keys are as follows:

1. `example['fens']` --- A list of FENs in a slightly stripped format, missing the halfmove clock and fullmove number (see [definitions on wiki](https://en.wikipedia.org/wiki/Forsyth%E2%80%93Edwards_Notation#Definition)). The starting positions have been excluded (no player made a move yet).
2. `example['moves']` --- A list of moves in [UCI format](https://en.wikipedia.org/wiki/Universal_Chess_Interface). `example['moves'][42]` is the move that **led to** position `example['fens'][42]`, etc.
3. `example['scores']` --- A list of Stockfish evaluations (in centipawns) and the game's terminal outcome condition if one exists. Evaluations are from the perspective of the player who is next to move. If `example['fens'][42]` is black's turn, `example['scores'][42]` will be from black's perspective. If the game ended with a terminal condition, the last element of the list is a string 'C' (checkmate), 'S' (stalemate) or 'I' (insufficient material). Games with other outcome conditions have been excluded.
4. `example['WhiteElo'], example['BlackElo']` --- Player's Elos.
<br>

### 3. Define Functions for Preprocessing
To use the data, you will require to define your own functions for transforming the data into your desired format.
For this guide, let's define a few mock functions so I can show you how to use them.

```py
# A mock tokenizer and functions for demonstration.
class Tokenizer:
    def __init__(self):
        pass
    def __call__(self, example):
        return example


# Transform Stockfish score and terminal outcomes.
def score_fn(score):
    return score

def preprocess(example, tokenizer, score_fn):
    # Get number of moves made in the game...
    max_ply = len(example['moves'])
    # ...and pick a position at random.
    random_position = random.randint(0, max_ply-2)

    # Get the FEN of our random choice.
    fen = example['fens'][random_position]

    # To get the move that leads to the *next* FEN, we have to add
    # +1 to the index. Same with the score, which is the evaluation
    # of that move. Please read the section about the data format clearly!
    move = example['moves'][random_position + 1]
    score = example['scores'][random_position + 1]

    # Transform data into the format of your choice.
    example['fens'] = tokenizer(fen)
    example['moves'] = tokenizer(move)
    example['scores'] = score_fn(score)
    return example

tokenizer = Tokenizer()
```
<br>

### 4. Shuffle And Preprocess
Use `dataset.shuffle()` to properly shuffle the dataset. Use `dataset.map()` to apply our preprocessors. This will process individual samples in parallel if you're using multiprocessing (e.g. with PyTorch dataloader).


```py
# Shuffle and apply your own preprocessing.
dataset = dataset.shuffle(seed=42)
dataset = dataset.map(preprocess, fn_kwargs={'tokenizer': tokenizer,
                                             'score_fn': score_fn})
```
<br>
<br>
<br>

# COMPLETE EXAMPLE
You can try pasting this into Colab and it should work fine. Have fun!

```py
import random
from datasets import load_dataset
from torch.utils.data import DataLoader


# A mock tokenizer and functions for demonstration.
class Tokenizer:
    def __init__(self):
        pass
    def __call__(self, example):
        return example


def score_fn(score):
    # Transform Stockfish score and terminal outcomes.
    return score

def preprocess(example, tokenizer, score_fn):
    # Get number of moves made in the game...
    max_ply = len(example['moves'])
    # ...and pick a position at random.
    random_position = random.randint(0, max_ply-2)

    # Get the FEN of our random choice.
    fen = example['fens'][random_position]

    # To get the move that leads to the *next* FEN, we have to add
    # +1 to the index. Same with the score, which is the evaluation
    # of that move. Please read the section about the data format clearly!
    move = example['moves'][random_position + 1]
    score = example['scores'][random_position + 1]

    # Transform data into the format of your choice.
    example['fens'] = tokenizer(fen)
    example['moves'] = tokenizer(move)
    example['scores'] = score_fn(score)
    return example


tokenizer = Tokenizer()

# Load dataset.
dataset = load_dataset(path="mauricett/lichess_sf",
                       split="train",
                       streaming=True,
                       trust_remote_code=True)

                    
# Shuffle and apply your own preprocessing.
dataset = dataset.shuffle(seed=42)
dataset = dataset.map(preprocess, fn_kwargs={'tokenizer': tokenizer,
                                             'score_fn': score_fn})

# PyTorch dataloader
dataloader = DataLoader(dataset, batch_size=1, num_workers=1)


for batch in dataloader:
    # do stuff
    print(batch)
    break

# Batch now looks like:
# {'WhiteElo': tensor([1361]), 'BlackElo': tensor([1412]), 'fens': ['3R4/5ppk/p1b2rqp/1p6/8/5P1P/1PQ3P1/7K w - -'], 'moves': ['g8h7'], 'scores': ['-535']}
# Much better!
```