--- license: cc-by-sa-4.0 task_categories: - text-classification language: - en pretty_name: Media Bias Identification Benchmark configs: - cognitive-bias - fake-news - gender-bias - hate-speech - linguistic-bias - political-bias - racial-bias - text-level-bias --- # Dataset Card for Media-Bias-Identification-Benchmark ## Table of Contents - [Dataset Card for Media-Bias-Identification-Benchmark](#dataset-card-for-mbib) - [Table of Contents](#table-of-contents) - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Tasks and Information](#tasks-and-information) - [Baseline](#baseline) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [cognitive-bias](#cognitive-bias) - [Data Fields](#data-fields) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** https://github.com/Media-Bias-Group/Media-Bias-Identification-Benchmark - **Repository:** https://github.com/Media-Bias-Group/Media-Bias-Identification-Benchmark - **Paper:** TODO - **Point of Contact:** [Martin Wessel](mailto:martin.wessel@uni-konstanz.de) ### Baseline
TaskModelMicro F1Macro F1
cognitive-bias ConvBERT/ConvBERT 0.7126 0.7664
fake-news Bart/RoBERTa-T 0.6811 0.7533
gender-bias RoBERTa-T/ELECTRA 0.8334 0.8211
hate-speech RoBERTA-T/Bart 0.8897 0.7310
linguistic-bias ConvBERT/Bart 0.7044 0.4995
political-bias ConvBERT/ConvBERT 0.7041 0.7110
racial-bias ConvBERT/ELECTRA 0.8772 0.6170
text-leve-bias ConvBERT/ConvBERT 0.7697 0.7532
### Languages All datasets are in English ## Dataset Structure ### Data Instances #### cognitive-bias An example of one training instance looks as follows. ```json { "text": "A defense bill includes language that would require military hospitals to provide abortions on demand", "label": 1 } ``` ### Data Fields - `text`: a sentence from various sources (eg., news articles, twitter, other social media). - `label`: binary indicator of bias (0 = unbiased, 1 = biased) ## Considerations for Using the Data ### Social Impact of Dataset We believe that MBIB offers a new common ground for research in the domain, especially given the rising amount of (research) attention directed toward media bias ### Citation Information ``` @inproceedings{ title = {Introducing MBIB - the first Media Bias Identification Benchmark Task and Dataset Collection}, author = {Wessel, Martin and Spinde, Timo and Horych, Tomáš and Ruas, Terry and Aizawa, Akiko and Gipp, Bela}, year = {2023}, note = {[in review]} } ```