|
import os |
|
import json |
|
from huggingface_hub import HfApi |
|
import glob |
|
from datetime import datetime |
|
from datasets import Dataset |
|
|
|
TOKEN = os.environ.get("HF_WRITE_TOKEN") |
|
API = HfApi(token=TOKEN) |
|
REPO_ID = "meg/calculate_carbon_runs" |
|
UPLOAD_REPO_ID = 'meg/HUGS_energy' |
|
|
|
output_directory = API.snapshot_download(repo_id=REPO_ID, repo_type='dataset') |
|
print(output_directory) |
|
|
|
|
|
dataset_results = [] |
|
for task in ['text_generation']: |
|
hardware_dirs = glob.glob(f"{output_directory}/runs/{task}/*") |
|
print(hardware_dirs) |
|
for hardware_dir in hardware_dirs: |
|
hardware = hardware_dir.split("/")[-1] |
|
org_dirs = glob.glob(f"{hardware_dir}/*") |
|
print(org_dirs) |
|
for org_dir in org_dirs: |
|
org = org_dir.split("/")[-1] |
|
model_dirs = glob.glob(f"{org_dir}/*") |
|
print(model_dirs) |
|
for model_dir in model_dirs: |
|
model = model_dir.split("/")[-1] |
|
model_runs = glob.glob(f"{model_dir}/*") |
|
dates = [dir.split("/")[-1] for dir in model_runs] |
|
try: |
|
|
|
sorted_dates = sorted( |
|
[datetime.strptime(date, '%Y-%m-%d-%H-%M-%S') for date in |
|
dates]) |
|
|
|
sorted_dates_str = [date.strftime('%Y-%m-%d-%H-%M-%S') for date in |
|
sorted_dates] |
|
last_date = sorted_dates_str[-1] |
|
most_recent_run = f"{model_dir}/{last_date}" |
|
print(most_recent_run) |
|
try: |
|
benchmark_report = json.loads(open(f"{most_recent_run}/benchmark_report.json", "rb+").read()) |
|
print(benchmark_report) |
|
prefill_data = benchmark_report['prefill'] |
|
prefill_energy = prefill_data['energy'] |
|
prefill_efficiency = prefill_data['efficiency'] |
|
decode_data = benchmark_report['decode'] |
|
decode_energy = decode_data['energy'] |
|
decode_efficiency = decode_data['efficiency'] |
|
preprocess_data = benchmark_report['preprocess'] |
|
preprocess_energy = preprocess_data['energy'] |
|
preprocess_efficiency = preprocess_data['efficiency'] |
|
dataset_results += [{'task':task, 'org':org, 'model':model, 'hardware':hardware, |
|
'date':last_date, 'prefill':{'energy':prefill_energy, |
|
'efficency':prefill_efficiency}, |
|
'decode':{'energy':decode_energy, 'efficiency':decode_efficiency}, |
|
'preprocess': {'energy':preprocess_energy, 'efficiency': preprocess_efficiency}},] |
|
|
|
except FileNotFoundError: |
|
error_report = open(f"{most_recent_run}/error.log", "rb+").read() |
|
print(error_report) |
|
except ValueError: |
|
|
|
continue |
|
|
|
print("*****") |
|
print(dataset_results) |
|
hub_dataset_results = Dataset.from_list(dataset_results) |
|
print(hub_dataset_results) |
|
hub_dataset_results.push_to_hub(UPLOAD_REPO_ID, token=TOKEN) |