Datasets:
Tasks:
Image Classification
Modalities:
Image
Formats:
parquet
Sub-tasks:
multi-class-image-classification
Languages:
English
Size:
10K - 100K
License:
File size: 3,326 Bytes
d0a16ec 966f88f d0a16ec 89d038a d0a16ec 89d038a aae745f d0a16ec aae2beb d0a16ec aae2beb 966f88f d0a16ec 966f88f d0a16ec 966f88f d0a16ec 966f88f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 |
# coding=utf-8
# Copyright 2021 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""The Microsoft Cats vs. Dogs dataset"""
import os
from typing import List
import datasets
from datasets.tasks import ImageClassification
logger = datasets.logging.get_logger(__name__)
_URL = "https://download.microsoft.com/download/3/E/1/3E1C3F21-ECDB-4869-8368-6DEBA77B919F/kagglecatsanddogs_5340.zip"
_HOMEPAGE = "https://www.microsoft.com/en-us/download/details.aspx?id=54765"
_DESCRIPTION = "A large set of images of cats and dogs. There are 1738 corrupted images that are dropped."
_CITATION = """\
@Inproceedings (Conference){asirra-a-captcha-that-exploits-interest-aligned-manual-image-categorization,
author = {Elson, Jeremy and Douceur, John (JD) and Howell, Jon and Saul, Jared},
title = {Asirra: A CAPTCHA that Exploits Interest-Aligned Manual Image Categorization},
booktitle = {Proceedings of 14th ACM Conference on Computer and Communications Security (CCS)},
year = {2007},
month = {October},
publisher = {Association for Computing Machinery, Inc.},
url = {https://www.microsoft.com/en-us/research/publication/asirra-a-captcha-that-exploits-interest-aligned-manual-image-categorization/},
edition = {Proceedings of 14th ACM Conference on Computer and Communications Security (CCS)},
}
"""
class CatsVsDogs(datasets.GeneratorBasedBuilder):
VERSION = datasets.Version("1.0.0")
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"image": datasets.Image(),
"labels": datasets.features.ClassLabel(names=["cat", "dog"]),
}
),
supervised_keys=("image", "labels"),
task_templates=[ImageClassification(image_column="image", label_column="labels")],
homepage=_HOMEPAGE,
citation=_CITATION,
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
images_path = os.path.join(dl_manager.download_and_extract(_URL), "PetImages")
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN, gen_kwargs={"files": dl_manager.iter_files([images_path])}
),
]
def _generate_examples(self, files):
for i, file in enumerate(files):
if os.path.basename(file).endswith(".jpg"):
with open(file, "rb") as f:
if b"JFIF" in f.peek(10):
yield str(i), {
"image": file,
"labels": os.path.basename(os.path.dirname(file)).lower(),
}
|