|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""CRD3 dataset""" |
|
|
|
from __future__ import absolute_import, division, print_function |
|
|
|
import json |
|
import os |
|
|
|
import datasets |
|
|
|
|
|
logger = datasets.logging.get_logger(__name__) |
|
|
|
|
|
_CITATION = """ |
|
@inproceedings{ |
|
title = {Storytelling with Dialogue: A Critical Role Dungeons and Dragons Dataset}, |
|
author = {Rameshkumar, Revanth and Bailey, Peter}, |
|
year = {2020}, |
|
publisher = {Association for Computational Linguistics}, |
|
conference = {ACL} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """ |
|
Storytelling with Dialogue: A Critical Role Dungeons and Dragons Dataset. |
|
Critical Role is an unscripted, live-streamed show where a fixed group of people play Dungeons and Dragons, an open-ended role-playing game. |
|
The dataset is collected from 159 Critical Role episodes transcribed to text dialogues, consisting of 398,682 turns. It also includes corresponding |
|
abstractive summaries collected from the Fandom wiki. The dataset is linguistically unique in that the narratives are generated entirely through player |
|
collaboration and spoken interaction. For each dialogue, there are a large number of turns, multiple abstractive summaries with varying levels of detail, |
|
and semantic ties to the previous dialogues. |
|
""" |
|
|
|
_URL = "https://github.com/RevanthRameshkumar/CRD3/archive/master.zip" |
|
|
|
|
|
def get_train_test_dev_files(files, test_split, train_split, dev_split): |
|
test_files = dev_files = train_files = [] |
|
for file in files: |
|
filename = os.path.split(file)[1].split("_")[0] |
|
if filename in test_split: |
|
test_files.append(file) |
|
elif filename in train_split: |
|
train_files.append(file) |
|
elif filename in dev_split: |
|
dev_files.append(file) |
|
else: |
|
logger.info("skipped file {}".format(file)) |
|
return test_files, train_files, dev_files |
|
|
|
|
|
class CRD3(datasets.GeneratorBasedBuilder): |
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"chunk": datasets.Value("string"), |
|
"chunk_id": datasets.Value("int32"), |
|
"turn_start": datasets.Value("int32"), |
|
"turn_end": datasets.Value("int32"), |
|
"alignment_score": datasets.Value("float32"), |
|
"turn_num": datasets.Value("int32"), |
|
"turns": datasets.features.Sequence( |
|
{ |
|
"names": datasets.Value("string"), |
|
"utterances": datasets.Value("string"), |
|
} |
|
), |
|
} |
|
), |
|
homepage="https://github.com/RevanthRameshkumar/CRD3", |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
path = dl_manager.download_and_extract(_URL) |
|
test_file = os.path.join(path, "CRD3-master", "data", "aligned data", "test_files") |
|
train_file = os.path.join(path, "CRD3-master", "data", "aligned data", "train_files") |
|
dev_file = os.path.join(path, "CRD3-master", "data", "aligned data", "val_files") |
|
with open(test_file, encoding="utf-8") as f: |
|
test_splits = [file.replace("\n", "") for file in f.readlines()] |
|
|
|
with open(train_file, encoding="utf-8") as f: |
|
train_splits = [file.replace("\n", "") for file in f.readlines()] |
|
with open(dev_file, encoding="utf-8") as f: |
|
dev_splits = [file.replace("\n", "") for file in f.readlines()] |
|
c2 = "CRD3-master/data/aligned data/c=2" |
|
c3 = "CRD3-master/data/aligned data/c=3" |
|
c4 = "CRD3-master/data/aligned data/c=4" |
|
files = [os.path.join(path, c2, file) for file in sorted(os.listdir(os.path.join(path, c2)))] |
|
files.extend([os.path.join(path, c3, file) for file in sorted(os.listdir(os.path.join(path, c3)))]) |
|
files.extend([os.path.join(path, c4, file) for file in sorted(os.listdir(os.path.join(path, c4)))]) |
|
|
|
test_files, train_files, dev_files = get_train_test_dev_files(files, test_splits, train_splits, dev_splits) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"files_path": train_files}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={"files_path": test_files}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={"files_path": dev_files}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, files_path): |
|
"""Yields examples.""" |
|
|
|
for file in files_path: |
|
with open(file, encoding="utf-8") as f: |
|
data = json.load(f) |
|
for id1, row in enumerate(data): |
|
chunk = row["CHUNK"] |
|
chunk_id = row["ALIGNMENT"]["CHUNK ID"] |
|
turn_start = row["ALIGNMENT"]["TURN START"] |
|
turn_end = row["ALIGNMENT"]["TURN END"] |
|
score = row["ALIGNMENT"]["ALIGNMENT SCORE"] |
|
for id2, turn in enumerate(row["TURNS"]): |
|
turn_names = turn["NAMES"] |
|
turn_utterances = turn["UTTERANCES"] |
|
turn_num = turn["NUMBER"] |
|
yield str(id1) + "_" + str(id2), { |
|
"chunk": chunk, |
|
"chunk_id": chunk_id, |
|
"turn_start": turn_start, |
|
"turn_end": turn_end, |
|
"alignment_score": score, |
|
"turn_num": turn_num, |
|
"turns": { |
|
"names": turn_names, |
|
"utterances": turn_utterances, |
|
}, |
|
} |
|
|