Datasets:

Modalities:
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
Dask
albertvillanova HF staff commited on
Commit
86db073
1 Parent(s): 45d4cbe

Add v2.1 data files

Browse files
README.md CHANGED
@@ -58,16 +58,16 @@ dataset_info:
58
  sequence: string
59
  splits:
60
  - name: validation
61
- num_bytes: 414286005
62
  num_examples: 101093
63
  - name: train
64
- num_bytes: 3466972085
65
  num_examples: 808731
66
  - name: test
67
- num_bytes: 406197152
68
  num_examples: 101092
69
- download_size: 1384271865
70
- dataset_size: 4287455242
71
  configs:
72
  - config_name: v1.1
73
  data_files:
@@ -77,6 +77,14 @@ configs:
77
  path: v1.1/train-*
78
  - split: test
79
  path: v1.1/test-*
 
 
 
 
 
 
 
 
80
  ---
81
 
82
  # Dataset Card for "ms_marco"
 
58
  sequence: string
59
  splits:
60
  - name: validation
61
+ num_bytes: 413765365
62
  num_examples: 101093
63
  - name: train
64
+ num_bytes: 3462807709
65
  num_examples: 808731
66
  - name: test
67
+ num_bytes: 405691932
68
  num_examples: 101092
69
+ download_size: 2105722550
70
+ dataset_size: 4282265006
71
  configs:
72
  - config_name: v1.1
73
  data_files:
 
77
  path: v1.1/train-*
78
  - split: test
79
  path: v1.1/test-*
80
+ - config_name: v2.1
81
+ data_files:
82
+ - split: validation
83
+ path: v2.1/validation-*
84
+ - split: train
85
+ path: v2.1/train-*
86
+ - split: test
87
+ path: v2.1/test-*
88
  ---
89
 
90
  # Dataset Card for "ms_marco"
dataset_infos.json CHANGED
@@ -84,7 +84,7 @@
84
  "size_in_bytes": 651487191
85
  },
86
  "v2.1": {
87
- "description": "\nStarting with a paper released at NIPS 2016, MS MARCO is a collection of datasets focused on deep learning in search.\n\nThe first dataset was a question answering dataset featuring 100,000 real Bing questions and a human generated answer. \nSince then we released a 1,000,000 question dataset, a natural langauge generation dataset, a passage ranking dataset, \nkeyphrase extraction dataset, crawling dataset, and a conversational search.\n\nThere have been 277 submissions. 20 KeyPhrase Extraction submissions, 87 passage ranking submissions, 0 document ranking \nsubmissions, 73 QnA V2 submissions, 82 NLGEN submisions, and 15 QnA V1 submissions\n\nThis data comes in three tasks/forms: Original QnA dataset(v1.1), Question Answering(v2.1), Natural Language Generation(v2.1). \n\nThe original question answering datset featured 100,000 examples and was released in 2016. Leaderboard is now closed but data is availible below.\n\nThe current competitive tasks are Question Answering and Natural Language Generation. Question Answering features over 1,000,000 queries and \nis much like the original QnA dataset but bigger and with higher quality. The Natural Language Generation dataset features 180,000 examples and \nbuilds upon the QnA dataset to deliver answers that could be spoken by a smart speaker.\n\n\nversion v2.1",
88
  "citation": "\n@article{DBLP:journals/corr/NguyenRSGTMD16,\n author = {Tri Nguyen and\n Mir Rosenberg and\n Xia Song and\n Jianfeng Gao and\n Saurabh Tiwary and\n Rangan Majumder and\n Li Deng},\n title = {{MS} {MARCO:} {A} Human Generated MAchine Reading COmprehension Dataset},\n journal = {CoRR},\n volume = {abs/1611.09268},\n year = {2016},\n url = {http://arxiv.org/abs/1611.09268},\n archivePrefix = {arXiv},\n eprint = {1611.09268},\n timestamp = {Mon, 13 Aug 2018 16:49:03 +0200},\n biburl = {https://dblp.org/rec/journals/corr/NguyenRSGTMD16.bib},\n bibsource = {dblp computer science bibliography, https://dblp.org}\n}\n}\n",
89
  "homepage": "https://microsoft.github.io/msmarco/",
90
  "license": "",
@@ -92,68 +92,53 @@
92
  "answers": {
93
  "feature": {
94
  "dtype": "string",
95
- "id": null,
96
  "_type": "Value"
97
  },
98
- "length": -1,
99
- "id": null,
100
  "_type": "Sequence"
101
  },
102
  "passages": {
103
  "feature": {
104
  "is_selected": {
105
  "dtype": "int32",
106
- "id": null,
107
  "_type": "Value"
108
  },
109
  "passage_text": {
110
  "dtype": "string",
111
- "id": null,
112
  "_type": "Value"
113
  },
114
  "url": {
115
  "dtype": "string",
116
- "id": null,
117
  "_type": "Value"
118
  }
119
  },
120
- "length": -1,
121
- "id": null,
122
  "_type": "Sequence"
123
  },
124
  "query": {
125
  "dtype": "string",
126
- "id": null,
127
  "_type": "Value"
128
  },
129
  "query_id": {
130
  "dtype": "int32",
131
- "id": null,
132
  "_type": "Value"
133
  },
134
  "query_type": {
135
  "dtype": "string",
136
- "id": null,
137
  "_type": "Value"
138
  },
139
  "wellFormedAnswers": {
140
  "feature": {
141
  "dtype": "string",
142
- "id": null,
143
  "_type": "Value"
144
  },
145
- "length": -1,
146
- "id": null,
147
  "_type": "Sequence"
148
  }
149
  },
150
- "supervised_keys": null,
151
  "builder_name": "ms_marco",
 
152
  "config_name": "v2.1",
153
  "version": {
154
  "version_str": "2.1.0",
155
  "description": "",
156
- "datasets_version_to_prepare": null,
157
  "major": 2,
158
  "minor": 1,
159
  "patch": 0
@@ -161,39 +146,25 @@
161
  "splits": {
162
  "validation": {
163
  "name": "validation",
164
- "num_bytes": 414286005,
165
  "num_examples": 101093,
166
- "dataset_name": "ms_marco"
167
  },
168
  "train": {
169
  "name": "train",
170
- "num_bytes": 3466972085,
171
  "num_examples": 808731,
172
- "dataset_name": "ms_marco"
173
  },
174
  "test": {
175
  "name": "test",
176
- "num_bytes": 406197152,
177
  "num_examples": 101092,
178
- "dataset_name": "ms_marco"
179
- }
180
- },
181
- "download_checksums": {
182
- "https://msmarco.blob.core.windows.net/msmarco/train_v2.1.json.gz": {
183
- "num_bytes": 1112116929,
184
- "checksum": "e91745411ca81e441a3bb75deb71ce000dc2fc31334085b7d499982f14218fe2"
185
- },
186
- "https://msmarco.blob.core.windows.net/msmarco/dev_v2.1.json.gz": {
187
- "num_bytes": 138303699,
188
- "checksum": "5b3c9c20d1808ee199a930941b0d96f79e397e9234f77a1496890b138df7cb3c"
189
- },
190
- "https://msmarco.blob.core.windows.net/msmarco/eval_v2.1_public.json.gz": {
191
- "num_bytes": 133851237,
192
- "checksum": "05ac0e448450d507e7ff8e37f48a41cc2d015f5bd2c7974d2445f00a53625db6"
193
  }
194
  },
195
- "download_size": 1384271865,
196
- "dataset_size": 4287455242,
197
- "size_in_bytes": 5671727107
198
  }
199
  }
 
84
  "size_in_bytes": 651487191
85
  },
86
  "v2.1": {
87
+ "description": "\nStarting with a paper released at NIPS 2016, MS MARCO is a collection of datasets focused on deep learning in search.\n\nThe first dataset was a question answering dataset featuring 100,000 real Bing questions and a human generated answer.\nSince then we released a 1,000,000 question dataset, a natural langauge generation dataset, a passage ranking dataset,\nkeyphrase extraction dataset, crawling dataset, and a conversational search.\n\nThere have been 277 submissions. 20 KeyPhrase Extraction submissions, 87 passage ranking submissions, 0 document ranking\nsubmissions, 73 QnA V2 submissions, 82 NLGEN submisions, and 15 QnA V1 submissions\n\nThis data comes in three tasks/forms: Original QnA dataset(v1.1), Question Answering(v2.1), Natural Language Generation(v2.1).\n\nThe original question answering datset featured 100,000 examples and was released in 2016. Leaderboard is now closed but data is availible below.\n\nThe current competitive tasks are Question Answering and Natural Language Generation. Question Answering features over 1,000,000 queries and\nis much like the original QnA dataset but bigger and with higher quality. The Natural Language Generation dataset features 180,000 examples and\nbuilds upon the QnA dataset to deliver answers that could be spoken by a smart speaker.\n\n\nversion v2.1",
88
  "citation": "\n@article{DBLP:journals/corr/NguyenRSGTMD16,\n author = {Tri Nguyen and\n Mir Rosenberg and\n Xia Song and\n Jianfeng Gao and\n Saurabh Tiwary and\n Rangan Majumder and\n Li Deng},\n title = {{MS} {MARCO:} {A} Human Generated MAchine Reading COmprehension Dataset},\n journal = {CoRR},\n volume = {abs/1611.09268},\n year = {2016},\n url = {http://arxiv.org/abs/1611.09268},\n archivePrefix = {arXiv},\n eprint = {1611.09268},\n timestamp = {Mon, 13 Aug 2018 16:49:03 +0200},\n biburl = {https://dblp.org/rec/journals/corr/NguyenRSGTMD16.bib},\n bibsource = {dblp computer science bibliography, https://dblp.org}\n}\n}\n",
89
  "homepage": "https://microsoft.github.io/msmarco/",
90
  "license": "",
 
92
  "answers": {
93
  "feature": {
94
  "dtype": "string",
 
95
  "_type": "Value"
96
  },
 
 
97
  "_type": "Sequence"
98
  },
99
  "passages": {
100
  "feature": {
101
  "is_selected": {
102
  "dtype": "int32",
 
103
  "_type": "Value"
104
  },
105
  "passage_text": {
106
  "dtype": "string",
 
107
  "_type": "Value"
108
  },
109
  "url": {
110
  "dtype": "string",
 
111
  "_type": "Value"
112
  }
113
  },
 
 
114
  "_type": "Sequence"
115
  },
116
  "query": {
117
  "dtype": "string",
 
118
  "_type": "Value"
119
  },
120
  "query_id": {
121
  "dtype": "int32",
 
122
  "_type": "Value"
123
  },
124
  "query_type": {
125
  "dtype": "string",
 
126
  "_type": "Value"
127
  },
128
  "wellFormedAnswers": {
129
  "feature": {
130
  "dtype": "string",
 
131
  "_type": "Value"
132
  },
 
 
133
  "_type": "Sequence"
134
  }
135
  },
 
136
  "builder_name": "ms_marco",
137
+ "dataset_name": "ms_marco",
138
  "config_name": "v2.1",
139
  "version": {
140
  "version_str": "2.1.0",
141
  "description": "",
 
142
  "major": 2,
143
  "minor": 1,
144
  "patch": 0
 
146
  "splits": {
147
  "validation": {
148
  "name": "validation",
149
+ "num_bytes": 413765365,
150
  "num_examples": 101093,
151
+ "dataset_name": null
152
  },
153
  "train": {
154
  "name": "train",
155
+ "num_bytes": 3462807709,
156
  "num_examples": 808731,
157
+ "dataset_name": null
158
  },
159
  "test": {
160
  "name": "test",
161
+ "num_bytes": 405691932,
162
  "num_examples": 101092,
163
+ "dataset_name": null
 
 
 
 
 
 
 
 
 
 
 
 
 
 
164
  }
165
  },
166
+ "download_size": 2105722550,
167
+ "dataset_size": 4282265006,
168
+ "size_in_bytes": 6387987556
169
  }
170
  }
v2.1/test-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bfbf0c91c55f85176a25760d12ec8daf9f222305bebb69025700c2147931c2a8
3
+ size 204396131
v2.1/train-00000-of-00007.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c92b58a2f53fbbe3cb6a24dadeafaaa7c0cf6f231eb99b95910d6b339812cffc
3
+ size 239836532
v2.1/train-00001-of-00007.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7b8feabe6fce4896f57eb27bc116c634a28b6bc28bf26a70aaa42d60c4745058
3
+ size 240396892
v2.1/train-00002-of-00007.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5ecc1666b6f00c5178a862473e35565be9dc45cfdcbb8955246fb0d25187fad1
3
+ size 241310853
v2.1/train-00003-of-00007.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c7cfc7eac63fe85ba1bfea309e04f44d8a28fd2800a4d2e6632cba4fb9bbb413
3
+ size 241994230
v2.1/train-00004-of-00007.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4f4cdc310668f4d8e0f4ce166151d2c42f2c8690fd9baa093077e9dbddd1e5fd
3
+ size 241681548
v2.1/train-00005-of-00007.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7746c5633447a23708372c973e46d606783a6ce5aeb2b1f54819c1bed2f24e70
3
+ size 242286762
v2.1/train-00006-of-00007.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:31def634615297347937066c2728d28e6d77aa4b99723ad19f81b6ceee523416
3
+ size 244190815
v2.1/validation-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a07a87f483e602f5812573bff45109e5cbd934773c1c364366f176dd791e44d7
3
+ size 209628787