File size: 5,522 Bytes
622e8c9 a38f1a8 622e8c9 a38f1a8 622e8c9 0d70f46 86fb9ed 58180bf 956f42d 622e8c9 86fb9ed 622e8c9 86fb9ed 622e8c9 1ada84a 622e8c9 1ada84a 956f42d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
---
annotations_creators:
- no-annotation
language_creators:
- expert-generated
- machine-generated
language:
- en
license:
- ms-pl
multilinguality:
- monolingual
- translation
size_categories:
- 1K<n<10K
source_datasets:
- extended|other-newstest2017
task_categories:
- translation
task_ids: []
paperswithcode_id: null
pretty_name: MsrZhenTranslationParity
dataset_info:
features:
- name: Reference-HT
dtype: string
- name: Reference-PE
dtype: string
- name: Combo-4
dtype: string
- name: Combo-5
dtype: string
- name: Combo-6
dtype: string
- name: Online-A-1710
dtype: string
splits:
- name: train
num_bytes: 1797033
num_examples: 2001
download_size: 0
dataset_size: 1797033
---
# Dataset Card for msr_zhen_translation_parity
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:**
[Translator Human Parity Data](https://msropendata.com/datasets/93f9aa87-9491-45ac-81c1-6498b6be0d0b)
- **Repository:**
- **Paper:**
[Achieving Human Parity on Automatic Chinese to English News Translation](https://www.microsoft.com/en-us/research/publication/achieving-human-parity-on-automatic-chinese-to-english-news-translation/)
- **Leaderboard:**
- **Point of Contact:**
### Dataset Summary
> Human evaluation results and translation output for the Translator Human Parity Data release,
> as described in https://blogs.microsoft.com/ai/machine-translation-news-test-set-human-parity/
> The Translator Human Parity Data release contains all human evaluation results and translations
> related to our paper "Achieving Human Parity on Automatic Chinese to English News Translation",
> published on March 14, 2018. We have released this data to
> 1) allow external validation of our claim of having achieved human parity
> 2) to foster future research by releasing two additional human references
> for the Reference-WMT test set.
>
The dataset includes:
1) two new references for Chinese-English language pair of WMT17,
one based on human translation from scratch (Reference-HT),
the other based on human post-editing (Reference-PE);
2) human parity translations generated by our research systems Combo-4, Combo-5, and Combo-6,
as well as translation output from online machine translation service Online-A-1710,
collected on October 16, 2017;
The data package provided with the study also includes (but not parsed and provided as
workable features of this dataset) all data points collected in human evaluation campaigns.
### Supported Tasks and Leaderboards
[More Information Needed]
### Languages
This dataset contains 6 extra English translations to Chinese-English language pair of WMT17.
## Dataset Structure
### Data Instances
[More Information Needed]
### Data Fields
As mentioned in the summary, this dataset provides 6 extra English translations of
Chinese-English language pair of WMT17.
Data fields are named exactly like the associated paper for easier cross-referenceing.
- `Reference-HT`: human translation from scrach.
- `Reference-PE`: human post-editing.
- `Combo-4`, `Combo-5`, `Combo-6`: three translations by research systems.
- `Online-A-1710`: a translation from an anonymous online machine translation service.
All data fields of a record are translations for the same Chinese source sentence.
### Data Splits
[More Information Needed]
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
[More Information Needed]
### Citation Information
Citation information is available at this link [Achieving Human Parity on Automatic Chinese to English News Translation](https://www.microsoft.com/en-us/research/publication/achieving-human-parity-on-automatic-chinese-to-english-news-translation/)
### Contributions
Thanks to [@leoxzhao](https://github.com/leoxzhao) for adding this dataset. |