File size: 7,099 Bytes
51f604c c399f07 51f604c 1dc0337 51f604c c399f07 51f604c ae7ce03 51f604c 1dc0337 51f604c 1dc0337 51f604c c399f07 51f604c c399f07 51f604c c399f07 51f604c c399f07 51f604c c399f07 51f604c c399f07 51f604c 5ad03aa c399f07 51f604c 5ad03aa 51f604c 5ad03aa 51f604c c399f07 51f604c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 |
import csv
import json
import os
import datasets
from typing import List, Any
# _SPLIT = ['train', 'test', 'valid']
_CITATION = """\
author: amardeep
"""
_DESCRIPTION = """\
This new dataset is designed to solve kp NLP task and is crafted with a lot of care.
"""
_HOMEPAGE = ""
# TODO: Add the licence for the dataset here if you can find it
_LICENSE = ""
# TODO: Add link to the official dataset URLs here
_URLS = {
"test": "test.jsonl",
"train": "train.jsonl",
"valid": "valid.jsonl"
}
# TODO: Name of the dataset usually match the script name with CamelCase instead of snake_case
class TestLDKP(datasets.GeneratorBasedBuilder):
"""TODO: Short description of my dataset."""
VERSION = datasets.Version("1.1.0")
BUILDER_CONFIGS = [
datasets.BuilderConfig(name="extraction", version=VERSION, description="This part of my dataset covers long document"),
datasets.BuilderConfig(name="generation", version=VERSION, description="This part of my dataset covers abstract only"),
datasets.BuilderConfig(name="raw", version=VERSION, description="This part of my dataset covers abstract only"),
datasets.BuilderConfig(name="ldkp_generation", version=VERSION, description="This part of my dataset covers abstract only"),
datasets.BuilderConfig(name="ldkp_extraction", version=VERSION, description="This part of my dataset covers abstract only"),
]
DEFAULT_CONFIG_NAME = "extraction"
def _info(self):
if self.config.name == "extraction" or self.config.name == "ldkp_extraction": # This is the name of the configuration selected in BUILDER_CONFIGS above
features = datasets.Features(
{
"id": datasets.Value("int64"),
"document": datasets.features.Sequence(datasets.Value("string")),
"doc_bio_tags": datasets.features.Sequence(datasets.Value("string"))
}
)
elif self.config.name == "generation" or self.config.name == "ldkp_generation":
features = datasets.Features(
{
"id": datasets.Value("int64"),
"document": datasets.features.Sequence(datasets.Value("string")),
"extractive_keyphrases": datasets.features.Sequence(datasets.Value("string")),
"abstractive_keyphrases": datasets.features.Sequence(datasets.Value("string"))
}
)
else:
features = datasets.Features(
{
"id": datasets.Value("int64"),
"document": datasets.features.Sequence(datasets.Value("string")),
"doc_bio_tags": datasets.features.Sequence(datasets.Value("string")),
"extractive_keyphrases": datasets.features.Sequence(datasets.Value("string")),
"abstractive_keyphrases": datasets.features.Sequence(datasets.Value("string")),
"other_metadata": datasets.features.Sequence(
{
"text": datasets.features.Sequence(datasets.Value("string")),
"bio_tags":datasets.features.Sequence(datasets.Value("string"))
}
)
}
)
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# This defines the different columns of the dataset and their types
features=features,
homepage=_HOMEPAGE,
# License for the dataset if available
license=_LICENSE,
# Citation for the dataset
citation=_CITATION,
)
def _split_generators(self, dl_manager):
data_dir = dl_manager.download_and_extract(_URLS)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": data_dir['train'],
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": data_dir['test'],
"split": "test"
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": data_dir['valid'],
"split": "valid",
},
),
]
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
def _generate_examples(self, filepath, split):
with open(filepath, encoding="utf-8") as f:
for key, row in enumerate(f):
data = json.loads(row)
if self.config.name == "extraction":
# Yields examples as (key, example) tuples
yield key, {
"id": data['paper_id'],
"document": data["document"],
"doc_bio_tags": data["doc_bio_tags"]
}
elif self.config.name == "ldkp_extraction":
yield key, {
"id": data['paper_id'],
"document": data["document"]+data["other_metadata"]['text'],
"doc_bio_tags": data["document_tags"] + data["other_metadata"]['bio_tags']
}
elif self.config.name == "ldkp_generation":
yield key, {
"id": data['paper_id'],
"document": data["document"]+data["other_metadata"]['text'],
"extractive_keyphrases": data["extractive_keyphrases"],
"abstractive_keyphrases": data["abstractive_keyphrases"]
}
elif self.config.name == "generation":
yield key, {
"id": data['paper_id'],
"document": data["document"],
"extractive_keyphrases": data["extractive_keyphrases"],
"abstractive_keyphrases": data["abstractive_keyphrases"]
}
else:
yield key, {
"id": data['paper_id'],
"document": data["document"],
"doc_bio_tags": data["doc_bio_tags"],
"extractive_keyphrases": data["extractive_keyphrases"],
"abstractive_keyphrases": data["abstractive_keyphrases"],
"other_metadata": data["other_metadata"]
}
|