Datasets:

Modalities:
Text
ArXiv:
Libraries:
Datasets
File size: 7,096 Bytes
51f604c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1dc0337
51f604c
 
 
 
ae7ce03
51f604c
 
 
1dc0337
51f604c
 
 
 
 
 
 
 
 
1dc0337
51f604c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1dc0337
 
 
 
 
 
 
 
51f604c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import csv
import json
import os

import datasets
from typing import List, Any

# _SPLIT = ['train', 'test', 'valid']
_CITATION = """\
author: amardeep
"""


_DESCRIPTION = """\
This new dataset is designed to solve kp NLP task and is crafted with a lot of care.
"""


_HOMEPAGE = ""

# TODO: Add the licence for the dataset here if you can find it
_LICENSE = ""

# TODO: Add link to the official dataset URLs here

_URLS = {
    "test": "test.jsonl",
    # "train": "train.jsonl",
    "valid": "valid.jsonl"
}


# TODO: Name of the dataset usually match the script name with CamelCase instead of snake_case
class TestLDKP(datasets.GeneratorBasedBuilder):
    """TODO: Short description of my dataset."""

    VERSION = datasets.Version("1.1.0")

    BUILDER_CONFIGS = [
        datasets.BuilderConfig(name="extraction", version=VERSION, description="This part of my dataset covers long document"),
        datasets.BuilderConfig(name="generation", version=VERSION, description="This part of my dataset covers abstract only"),
        datasets.BuilderConfig(name="raw", version=VERSION, description="This part of my dataset covers abstract only"),
        datasets.BuilderConfig(name="ldkp_generation", version=VERSION, description="This part of my dataset covers abstract only"),
        datasets.BuilderConfig(name="ldkp_extraction", version=VERSION, description="This part of my dataset covers abstract only"),

    ]

    DEFAULT_CONFIG_NAME = "extraction"  

    def _info(self):
        if self.config.name == "extraction" or self.config.name == "ldkp_extraction":  # This is the name of the configuration selected in BUILDER_CONFIGS above
            features = datasets.Features(
                {
                    "id": datasets.Value("int64"),
                    "document": datasets.features.Sequence(datasets.Value("string")),
                    "BIO_tags": datasets.features.Sequence(datasets.Value("string"))
                    
                }
            )
        elif self.config.name == "generation" or self.config.name == "ldkp_generation":  
            features = datasets.Features(
                {
                    "id": datasets.Value("int64"),
                    "document": datasets.features.Sequence(datasets.Value("string")),
                    "extractive_keyphrases": datasets.features.Sequence(datasets.Value("string")),
                    "abstractive_keyphrases": datasets.features.Sequence(datasets.Value("string"))
                    
                }
            )
        else:
            features = datasets.Features(
                {
                    "id": datasets.Value("int64"),
                    "document": datasets.features.Sequence(datasets.Value("string")),
                    "document_tags": datasets.features.Sequence(datasets.Value("string")),
                    "extractive_keyphrases": datasets.features.Sequence(datasets.Value("string")),
                    "abstractive_keyphrases": datasets.features.Sequence(datasets.Value("string")),
                    "other_metadata": datasets.features.Sequence(
                        {
                            "text": datasets.features.Sequence(datasets.Value("string")),
                            "tags":datasets.features.Sequence(datasets.Value("string"))
                        }
                    )

                    
                }
            )
        return datasets.DatasetInfo(
            # This is the description that will appear on the datasets page.
            description=_DESCRIPTION,
            # This defines the different columns of the dataset and their types
            features=features,  
            homepage=_HOMEPAGE,
            # License for the dataset if available
            license=_LICENSE,
            # Citation for the dataset
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
    
        data_dir = dl_manager.download_and_extract(_URLS)
        return [
            # datasets.SplitGenerator(
            #     name=datasets.Split.TRAIN,
            #     # These kwargs will be passed to _generate_examples
            #     gen_kwargs={
            #         "filepath": data_dir['train'],
            #         "split": "train",
            #     },
            # ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "filepath": data_dir['test'],
                    "split": "test"
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "filepath": data_dir['valid'],
                    "split": "valid",
                },
            ),
        ]

    # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
    def _generate_examples(self, filepath, split):
        with open(filepath, encoding="utf-8") as f:
            for key, row in enumerate(f):
                data = json.loads(row)
                if self.config.name == "extraction":
                    # Yields examples as (key, example) tuples
                    yield key, {
                        "id": data['paper_id']
                        "document": data["document"],
                        "BIO_tags": data["document_tags"]
                    }
                elif self.config.name == "ldkp_extraction": 
                    yield key, {
                        "id": data['paper_id']
                        "document": data["document"]+data["other_metadata"]['text'],
                        "BIO_tags": data["document_tags"] + data["other_metadata"]['tags']
                    }
                elif self.config.name == "ldkp_generation": 
                    yield key, {
                        "id": data['paper_id']
                        "document": data["document"]+data["other_metadata"]['text'],
                        "extractive_keyphrases": data["extractive_keyphrases"],
                        "abstractive_keyphrases": data["abstractive_keyphrases"]
                    }
                elif self.config.name == "generation": 
                    yield key, {
                        "id": data['paper_id']
                        "document": data["document"],
                        "extractive_keyphrases": data["extractive_keyphrases"],
                        "abstractive_keyphrases": data["abstractive_keyphrases"]
                    }
                else:
                    yield key, {
                        "id": data['paper_id']
                        "document": data["document"],
                        "document_tags": data["document_tags"],
                        "extractive_keyphrases": data["extractive_keyphrases"],
                        "abstractive_keyphrases": data["abstractive_keyphrases"],
                        "other_metadata": data["other_metadata"]
                    }