Datasets:

Modalities:
Text
ArXiv:
Libraries:
Datasets
dmahata commited on
Commit
ab0a4a6
1 Parent(s): b20f326

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +163 -0
README.md ADDED
@@ -0,0 +1,163 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ## Dataset Summary
2
+
3
+ ## Dataset Structure
4
+
5
+
6
+ ### Data Fields
7
+
8
+
9
+ ### Data Splits
10
+
11
+
12
+ ## Usage
13
+
14
+ ### Full Dataset
15
+
16
+ ```python
17
+ from datasets import load_dataset
18
+
19
+ # get entire dataset
20
+ dataset = load_dataset("midas/inspec", "raw")
21
+
22
+ # sample from the train split
23
+ print("Sample from training dataset split")
24
+ train_sample = dataset["train"][0]
25
+ print("Fields in the sample: ", [key for key in train_sample.keys()])
26
+ print("Tokenized Document: ", train_sample["document"])
27
+ print("Document BIO Tags: ", train_sample["doc_bio_tags"])
28
+ print("Extractive/present Keyphrases: ", train_sample["extractive_keyphrases"])
29
+ print("Abstractive/absent Keyphrases: ", train_sample["abstractive_keyphrases"])
30
+ print("\n-----------\n")
31
+
32
+ # sample from the validation split
33
+ print("Sample from validation dataset split")
34
+ validation_sample = dataset["validation"][0]
35
+ print("Fields in the sample: ", [key for key in validation_sample.keys()])
36
+ print("Tokenized Document: ", validation_sample["document"])
37
+ print("Document BIO Tags: ", validation_sample["doc_bio_tags"])
38
+ print("Extractive/present Keyphrases: ", validation_sample["extractive_keyphrases"])
39
+ print("Abstractive/absent Keyphrases: ", validation_sample["abstractive_keyphrases"])
40
+ print("\n-----------\n")
41
+
42
+ # sample from the test split
43
+ print("Sample from test dataset split")
44
+ test_sample = dataset["test"][0]
45
+ print("Fields in the sample: ", [key for key in test_sample.keys()])
46
+ print("Tokenized Document: ", test_sample["document"])
47
+ print("Document BIO Tags: ", test_sample["doc_bio_tags"])
48
+ print("Extractive/present Keyphrases: ", test_sample["extractive_keyphrases"])
49
+ print("Abstractive/absent Keyphrases: ", test_sample["abstractive_keyphrases"])
50
+ print("\n-----------\n")
51
+ ```
52
+ **Output**
53
+
54
+ ```bash
55
+ Sample from training dataset split
56
+ Fields in the sample: ['id', 'document', 'doc_bio_tags', 'extractive_keyphrases', 'abstractive_keyphrases', 'other_metadata']
57
+ Tokenized Document: ['A', 'conflict', 'between', 'language', 'and', 'atomistic', 'information', 'Fred', 'Dretske', 'and', 'Jerry', 'Fodor', 'are', 'responsible', 'for', 'popularizing', 'three', 'well-known', 'theses', 'in', 'contemporary', 'philosophy', 'of', 'mind', ':', 'the', 'thesis', 'of', 'Information-Based', 'Semantics', '-LRB-', 'IBS', '-RRB-', ',', 'the', 'thesis', 'of', 'Content', 'Atomism', '-LRB-', 'Atomism', '-RRB-', 'and', 'the', 'thesis', 'of', 'the', 'Language', 'of', 'Thought', '-LRB-', 'LOT', '-RRB-', '.', 'LOT', 'concerns', 'the', 'semantically', 'relevant', 'structure', 'of', 'representations', 'involved', 'in', 'cognitive', 'states', 'such', 'as', 'beliefs', 'and', 'desires', '.', 'It', 'maintains', 'that', 'all', 'such', 'representations', 'must', 'have', 'syntactic', 'structures', 'mirroring', 'the', 'structure', 'of', 'their', 'contents', '.', 'IBS', 'is', 'a', 'thesis', 'about', 'the', 'nature', 'of', 'the', 'relations', 'that', 'connect', 'cognitive', 'representations', 'and', 'their', 'parts', 'to', 'their', 'contents', '-LRB-', 'semantic', 'relations', '-RRB-', '.', 'It', 'holds', 'that', 'these', 'relations', 'supervene', 'solely', 'on', 'relations', 'of', 'the', 'kind', 'that', 'support', 'information', 'content', ',', 'perhaps', 'with', 'some', 'help', 'from', 'logical', 'principles', 'of', 'combination', '.', 'Atomism', 'is', 'a', 'thesis', 'about', 'the', 'nature', 'of', 'the', 'content', 'of', 'simple', 'symbols', '.', 'It', 'holds', 'that', 'each', 'substantive', 'simple', 'symbol', 'possesses', 'its', 'content', 'independently', 'of', 'all', 'other', 'symbols', 'in', 'the', 'representational', 'system', '.', 'I', 'argue', 'that', 'Dretske', "'s", 'and', 'Fodor', "'s", 'theories', 'are', 'false', 'and', 'that', 'their', 'falsehood', 'results', 'from', 'a', 'conflict', 'IBS', 'and', 'Atomism', ',', 'on', 'the', 'one', 'hand', ',', 'and', 'LOT', ',', 'on', 'the', 'other']
58
+ Document BIO Tags: ['O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'B', 'I', 'I', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'B', 'O', 'O', 'O', 'O', 'O', 'B', 'I', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'B', 'I', 'I', 'O', 'B', 'O', 'O', 'B', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'B', 'I', 'O', 'O', 'B', 'O', 'B', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'B', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'B', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'B', 'O', 'O', 'O', 'O']
59
+ Extractive/present Keyphrases: ['philosophy of mind', 'content atomism', 'ibs', 'language of thought', 'lot', 'cognitive states', 'beliefs', 'desires']
60
+ Abstractive/absent Keyphrases: ['information-based semantics']
61
+
62
+ -----------
63
+
64
+ Sample from validation dataset split
65
+ Fields in the sample: ['id', 'document', 'doc_bio_tags', 'extractive_keyphrases', 'abstractive_keyphrases', 'other_metadata']
66
+ Tokenized Document: ['Impact', 'of', 'aviation', 'highway-in-the-sky', 'displays', 'on', 'pilot', 'situation', 'awareness', 'Thirty-six', 'pilots', '-LRB-', '31', 'men', ',', '5', 'women', '-RRB-', 'were', 'tested', 'in', 'a', 'flight', 'simulator', 'on', 'their', 'ability', 'to', 'intercept', 'a', 'pathway', 'depicted', 'on', 'a', 'highway-in-the-sky', '-LRB-', 'HITS', '-RRB-', 'display', '.', 'While', 'intercepting', 'and', 'flying', 'the', 'pathway', ',', 'pilots', 'were', 'required', 'to', 'watch', 'for', 'traffic', 'outside', 'the', 'cockpit', '.', 'Additionally', ',', 'pilots', 'were', 'tested', 'on', 'their', 'awareness', 'of', 'speed', ',', 'altitude', ',', 'and', 'heading', 'during', 'the', 'flight', '.', 'Results', 'indicated', 'that', 'the', 'presence', 'of', 'a', 'flight', 'guidance', 'cue', 'significantly', 'improved', 'flight', 'path', 'awareness', 'while', 'intercepting', 'the', 'pathway', ',', 'but', 'significant', 'practice', 'effects', 'suggest', 'that', 'a', 'guidance', 'cue', 'might', 'be', 'unnecessary', 'if', 'pilots', 'are', 'given', 'proper', 'training', '.', 'The', 'amount', 'of', 'time', 'spent', 'looking', 'outside', 'the', 'cockpit', 'while', 'using', 'the', 'HITS', 'display', 'was', 'significantly', 'less', 'than', 'when', 'using', 'conventional', 'aircraft', 'instruments', '.', 'Additionally', ',', 'awareness', 'of', 'flight', 'information', 'present', 'on', 'the', 'HITS', 'display', 'was', 'poor', '.', 'Actual', 'or', 'potential', 'applications', 'of', 'this', 'research', 'include', 'guidance', 'for', 'the', 'development', 'of', 'perspective', 'flight', 'display', 'standards', 'and', 'as', 'a', 'basis', 'for', 'flight', 'training', 'requirements']
67
+ Document BIO Tags: ['O', 'O', 'O', 'O', 'O', 'O', 'O', 'B', 'I', 'O', 'B', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'B', 'I', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'B', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'B', 'O', 'O', 'O', 'B', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'B', 'I', 'O', 'O', 'O', 'B', 'I', 'I', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'B', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'B', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O']
68
+ Extractive/present Keyphrases: ['flight simulator', 'pilots', 'cockpit', 'flight guidance', 'situation awareness', 'flight path awareness']
69
+ Abstractive/absent Keyphrases: ['highway-in-the-sky display', 'human factors', 'aircraft display']
70
+
71
+ -----------
72
+
73
+ Sample from test dataset split
74
+ Fields in the sample: ['id', 'document', 'doc_bio_tags', 'extractive_keyphrases', 'abstractive_keyphrases', 'other_metadata']
75
+ Tokenized Document: ['A', 'new', 'graphical', 'user', 'interface', 'for', 'fast', 'construction', 'of', 'computation', 'phantoms', 'and', 'MCNP', 'calculations', ':', 'application', 'to', 'calibration', 'of', 'in', 'vivo', 'measurement', 'systems', 'Reports', 'on', 'a', 'new', 'utility', 'for', 'development', 'of', 'computational', 'phantoms', 'for', 'Monte', 'Carlo', 'calculations', 'and', 'data', 'analysis', 'for', 'in', 'vivo', 'measurements', 'of', 'radionuclides', 'deposited', 'in', 'tissues', '.', 'The', 'individual', 'properties', 'of', 'each', 'worker', 'can', 'be', 'acquired', 'for', 'a', 'rather', 'precise', 'geometric', 'representation', 'of', 'his', '-LRB-', 'her', '-RRB-', 'anatomy', ',', 'which', 'is', 'particularly', 'important', 'for', 'low', 'energy', 'gamma', 'ray', 'emitting', 'sources', 'such', 'as', 'thorium', ',', 'uranium', ',', 'plutonium', 'and', 'other', 'actinides', '.', 'The', 'software', 'enables', 'automatic', 'creation', 'of', 'an', 'MCNP', 'input', 'data', 'file', 'based', 'on', 'scanning', 'data', '.', 'The', 'utility', 'includes', 'segmentation', 'of', 'images', 'obtained', 'with', 'either', 'computed', 'tomography', 'or', 'magnetic', 'resonance', 'imaging', 'by', 'distinguishing', 'tissues', 'according', 'to', 'their', 'signal', '-LRB-', 'brightness', '-RRB-', 'and', 'specification', 'of', 'the', 'source', 'and', 'detector', '.', 'In', 'addition', ',', 'a', 'coupling', 'of', 'individual', 'voxels', 'within', 'the', 'tissue', 'is', 'used', 'to', 'reduce', 'the', 'memory', 'demand', 'and', 'to', 'increase', 'the', 'calculational', 'speed', '.', 'The', 'utility', 'was', 'tested', 'for', 'low', 'energy', 'emitters', 'in', 'plastic', 'and', 'biological', 'tissues', 'as', 'well', 'as', 'for', 'computed', 'tomography', 'and', 'magnetic', 'resonance', 'imaging', 'scanning', 'information']
76
+ Document BIO Tags: ['O', 'O', 'B', 'I', 'I', 'O', 'O', 'O', 'O', 'B', 'I', 'O', 'O', 'O', 'O', 'O', 'O', 'B', 'O', 'B', 'I', 'I', 'I', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'B', 'I', 'O', 'B', 'I', 'I', 'O', 'O', 'O', 'O', 'B', 'I', 'I', 'O', 'B', 'O', 'O', 'B', 'O', 'O', 'O', 'O', 'O', 'O', 'B', 'O', 'O', 'O', 'O', 'O', 'O', 'B', 'I', 'I', 'O', 'O', 'O', 'O', 'O', 'B', 'O', 'O', 'O', 'O', 'O', 'O', 'B', 'I', 'I', 'I', 'I', 'I', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'B', 'O', 'O', 'B', 'O', 'B', 'I', 'O', 'O', 'B', 'I', 'I', 'I', 'O', 'O', 'B', 'I', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'B', 'I', 'O', 'O', 'O', 'O', 'O', 'O', 'B', 'O', 'O', 'O', 'B', 'O', 'B', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'B', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'B', 'I', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'B', 'I', 'O', 'O', 'O', 'O', 'B', 'I', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'B', 'O', 'O', 'B', 'O', 'O', 'O', 'O', 'B', 'I', 'O', 'B', 'I', 'I', 'I', 'I']
77
+ Extractive/present Keyphrases: ['computational phantoms', 'monte carlo calculations', 'in vivo measurements', 'radionuclides', 'tissues', 'worker', 'precise geometric representation', 'mcnp input data file', 'scanning data', 'computed tomography', 'brightness', 'graphical user interface', 'computation phantoms', 'calibration', 'in vivo measurement systems', 'signal', 'detector', 'individual voxels', 'memory demand', 'calculational speed', 'plastic', 'magnetic resonance imaging scanning information', 'anatomy', 'low energy gamma ray emitting sources', 'actinides', 'software', 'automatic creation']
78
+ Abstractive/absent Keyphrases: ['th', 'u', 'pu', 'biological tissues']
79
+
80
+ -----------
81
+ ```
82
+
83
+ ### Keyphrase Extraction
84
+ ```python
85
+ from datasets import load_dataset
86
+
87
+ # get the dataset only for keyphrase extraction
88
+ dataset = load_dataset("midas/kptimes", "extraction")
89
+
90
+ print("Samples for Keyphrase Extraction")
91
+
92
+ # sample from the train split
93
+ print("Sample from training data split")
94
+ train_sample = dataset["train"][0]
95
+ print("Fields in the sample: ", [key for key in train_sample.keys()])
96
+ print("Tokenized Document: ", train_sample["document"])
97
+ print("Document BIO Tags: ", train_sample["doc_bio_tags"])
98
+ print("\n-----------\n")
99
+
100
+ # sample from the validation split
101
+ print("Sample from validation data split")
102
+ validation_sample = dataset["validation"][0]
103
+ print("Fields in the sample: ", [key for key in validation_sample.keys()])
104
+ print("Tokenized Document: ", validation_sample["document"])
105
+ print("Document BIO Tags: ", validation_sample["doc_bio_tags"])
106
+ print("\n-----------\n")
107
+
108
+ # sample from the test split
109
+ print("Sample from test data split")
110
+ test_sample = dataset["test"][0]
111
+ print("Fields in the sample: ", [key for key in test_sample.keys()])
112
+ print("Tokenized Document: ", test_sample["document"])
113
+ print("Document BIO Tags: ", test_sample["doc_bio_tags"])
114
+ print("\n-----------\n")
115
+ ```
116
+
117
+ ### Keyphrase Generation
118
+ ```python
119
+ # get the dataset only for keyphrase generation
120
+ dataset = load_dataset("midas/kptimes", "generation")
121
+
122
+ print("Samples for Keyphrase Generation")
123
+
124
+ # sample from the train split
125
+ print("Sample from training data split")
126
+ train_sample = dataset["train"][0]
127
+ print("Fields in the sample: ", [key for key in train_sample.keys()])
128
+ print("Tokenized Document: ", train_sample["document"])
129
+ print("Extractive/present Keyphrases: ", train_sample["extractive_keyphrases"])
130
+ print("Abstractive/absent Keyphrases: ", train_sample["abstractive_keyphrases"])
131
+ print("\n-----------\n")
132
+
133
+ # sample from the validation split
134
+ print("Sample from validation data split")
135
+ validation_sample = dataset["validation"][0]
136
+ print("Fields in the sample: ", [key for key in validation_sample.keys()])
137
+ print("Tokenized Document: ", validation_sample["document"])
138
+ print("Extractive/present Keyphrases: ", validation_sample["extractive_keyphrases"])
139
+ print("Abstractive/absent Keyphrases: ", validation_sample["abstractive_keyphrases"])
140
+ print("\n-----------\n")
141
+
142
+ # sample from the test split
143
+ print("Sample from test data split")
144
+ test_sample = dataset["test"][0]
145
+ print("Fields in the sample: ", [key for key in test_sample.keys()])
146
+ print("Tokenized Document: ", test_sample["document"])
147
+ print("Extractive/present Keyphrases: ", test_sample["extractive_keyphrases"])
148
+ print("Abstractive/absent Keyphrases: ", test_sample["abstractive_keyphrases"])
149
+ print("\n-----------\n")
150
+ ```
151
+ ## Citation Information
152
+ ```
153
+ @inproceedings{hulth2003improved,
154
+ title={Improved automatic keyword extraction given more linguistic knowledge},
155
+ author={Hulth, Anette},
156
+ booktitle={Proceedings of the 2003 conference on Empirical methods in natural language processing},
157
+ pages={216--223},
158
+ year={2003}
159
+ }
160
+ ```
161
+
162
+ ## Contributions
163
+ Thanks to [@debanjanbhucs](https://github.com/debanjanbhucs), [@dibyaaaaax](https://github.com/dibyaaaaax) and [@ad6398](https://github.com/ad6398) for adding this dataset