Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,163 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
## Dataset Summary
|
2 |
+
|
3 |
+
## Dataset Structure
|
4 |
+
|
5 |
+
|
6 |
+
### Data Fields
|
7 |
+
|
8 |
+
|
9 |
+
### Data Splits
|
10 |
+
|
11 |
+
|
12 |
+
## Usage
|
13 |
+
|
14 |
+
### Full Dataset
|
15 |
+
|
16 |
+
```python
|
17 |
+
from datasets import load_dataset
|
18 |
+
|
19 |
+
# get entire dataset
|
20 |
+
dataset = load_dataset("midas/inspec", "raw")
|
21 |
+
|
22 |
+
# sample from the train split
|
23 |
+
print("Sample from training dataset split")
|
24 |
+
train_sample = dataset["train"][0]
|
25 |
+
print("Fields in the sample: ", [key for key in train_sample.keys()])
|
26 |
+
print("Tokenized Document: ", train_sample["document"])
|
27 |
+
print("Document BIO Tags: ", train_sample["doc_bio_tags"])
|
28 |
+
print("Extractive/present Keyphrases: ", train_sample["extractive_keyphrases"])
|
29 |
+
print("Abstractive/absent Keyphrases: ", train_sample["abstractive_keyphrases"])
|
30 |
+
print("\n-----------\n")
|
31 |
+
|
32 |
+
# sample from the validation split
|
33 |
+
print("Sample from validation dataset split")
|
34 |
+
validation_sample = dataset["validation"][0]
|
35 |
+
print("Fields in the sample: ", [key for key in validation_sample.keys()])
|
36 |
+
print("Tokenized Document: ", validation_sample["document"])
|
37 |
+
print("Document BIO Tags: ", validation_sample["doc_bio_tags"])
|
38 |
+
print("Extractive/present Keyphrases: ", validation_sample["extractive_keyphrases"])
|
39 |
+
print("Abstractive/absent Keyphrases: ", validation_sample["abstractive_keyphrases"])
|
40 |
+
print("\n-----------\n")
|
41 |
+
|
42 |
+
# sample from the test split
|
43 |
+
print("Sample from test dataset split")
|
44 |
+
test_sample = dataset["test"][0]
|
45 |
+
print("Fields in the sample: ", [key for key in test_sample.keys()])
|
46 |
+
print("Tokenized Document: ", test_sample["document"])
|
47 |
+
print("Document BIO Tags: ", test_sample["doc_bio_tags"])
|
48 |
+
print("Extractive/present Keyphrases: ", test_sample["extractive_keyphrases"])
|
49 |
+
print("Abstractive/absent Keyphrases: ", test_sample["abstractive_keyphrases"])
|
50 |
+
print("\n-----------\n")
|
51 |
+
```
|
52 |
+
**Output**
|
53 |
+
|
54 |
+
```bash
|
55 |
+
Sample from training dataset split
|
56 |
+
Fields in the sample: ['id', 'document', 'doc_bio_tags', 'extractive_keyphrases', 'abstractive_keyphrases', 'other_metadata']
|
57 |
+
Tokenized Document: ['A', 'conflict', 'between', 'language', 'and', 'atomistic', 'information', 'Fred', 'Dretske', 'and', 'Jerry', 'Fodor', 'are', 'responsible', 'for', 'popularizing', 'three', 'well-known', 'theses', 'in', 'contemporary', 'philosophy', 'of', 'mind', ':', 'the', 'thesis', 'of', 'Information-Based', 'Semantics', '-LRB-', 'IBS', '-RRB-', ',', 'the', 'thesis', 'of', 'Content', 'Atomism', '-LRB-', 'Atomism', '-RRB-', 'and', 'the', 'thesis', 'of', 'the', 'Language', 'of', 'Thought', '-LRB-', 'LOT', '-RRB-', '.', 'LOT', 'concerns', 'the', 'semantically', 'relevant', 'structure', 'of', 'representations', 'involved', 'in', 'cognitive', 'states', 'such', 'as', 'beliefs', 'and', 'desires', '.', 'It', 'maintains', 'that', 'all', 'such', 'representations', 'must', 'have', 'syntactic', 'structures', 'mirroring', 'the', 'structure', 'of', 'their', 'contents', '.', 'IBS', 'is', 'a', 'thesis', 'about', 'the', 'nature', 'of', 'the', 'relations', 'that', 'connect', 'cognitive', 'representations', 'and', 'their', 'parts', 'to', 'their', 'contents', '-LRB-', 'semantic', 'relations', '-RRB-', '.', 'It', 'holds', 'that', 'these', 'relations', 'supervene', 'solely', 'on', 'relations', 'of', 'the', 'kind', 'that', 'support', 'information', 'content', ',', 'perhaps', 'with', 'some', 'help', 'from', 'logical', 'principles', 'of', 'combination', '.', 'Atomism', 'is', 'a', 'thesis', 'about', 'the', 'nature', 'of', 'the', 'content', 'of', 'simple', 'symbols', '.', 'It', 'holds', 'that', 'each', 'substantive', 'simple', 'symbol', 'possesses', 'its', 'content', 'independently', 'of', 'all', 'other', 'symbols', 'in', 'the', 'representational', 'system', '.', 'I', 'argue', 'that', 'Dretske', "'s", 'and', 'Fodor', "'s", 'theories', 'are', 'false', 'and', 'that', 'their', 'falsehood', 'results', 'from', 'a', 'conflict', 'IBS', 'and', 'Atomism', ',', 'on', 'the', 'one', 'hand', ',', 'and', 'LOT', ',', 'on', 'the', 'other']
|
58 |
+
Document BIO Tags: ['O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'B', 'I', 'I', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'B', 'O', 'O', 'O', 'O', 'O', 'B', 'I', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'B', 'I', 'I', 'O', 'B', 'O', 'O', 'B', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'B', 'I', 'O', 'O', 'B', 'O', 'B', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'B', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'B', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'B', 'O', 'O', 'O', 'O']
|
59 |
+
Extractive/present Keyphrases: ['philosophy of mind', 'content atomism', 'ibs', 'language of thought', 'lot', 'cognitive states', 'beliefs', 'desires']
|
60 |
+
Abstractive/absent Keyphrases: ['information-based semantics']
|
61 |
+
|
62 |
+
-----------
|
63 |
+
|
64 |
+
Sample from validation dataset split
|
65 |
+
Fields in the sample: ['id', 'document', 'doc_bio_tags', 'extractive_keyphrases', 'abstractive_keyphrases', 'other_metadata']
|
66 |
+
Tokenized Document: ['Impact', 'of', 'aviation', 'highway-in-the-sky', 'displays', 'on', 'pilot', 'situation', 'awareness', 'Thirty-six', 'pilots', '-LRB-', '31', 'men', ',', '5', 'women', '-RRB-', 'were', 'tested', 'in', 'a', 'flight', 'simulator', 'on', 'their', 'ability', 'to', 'intercept', 'a', 'pathway', 'depicted', 'on', 'a', 'highway-in-the-sky', '-LRB-', 'HITS', '-RRB-', 'display', '.', 'While', 'intercepting', 'and', 'flying', 'the', 'pathway', ',', 'pilots', 'were', 'required', 'to', 'watch', 'for', 'traffic', 'outside', 'the', 'cockpit', '.', 'Additionally', ',', 'pilots', 'were', 'tested', 'on', 'their', 'awareness', 'of', 'speed', ',', 'altitude', ',', 'and', 'heading', 'during', 'the', 'flight', '.', 'Results', 'indicated', 'that', 'the', 'presence', 'of', 'a', 'flight', 'guidance', 'cue', 'significantly', 'improved', 'flight', 'path', 'awareness', 'while', 'intercepting', 'the', 'pathway', ',', 'but', 'significant', 'practice', 'effects', 'suggest', 'that', 'a', 'guidance', 'cue', 'might', 'be', 'unnecessary', 'if', 'pilots', 'are', 'given', 'proper', 'training', '.', 'The', 'amount', 'of', 'time', 'spent', 'looking', 'outside', 'the', 'cockpit', 'while', 'using', 'the', 'HITS', 'display', 'was', 'significantly', 'less', 'than', 'when', 'using', 'conventional', 'aircraft', 'instruments', '.', 'Additionally', ',', 'awareness', 'of', 'flight', 'information', 'present', 'on', 'the', 'HITS', 'display', 'was', 'poor', '.', 'Actual', 'or', 'potential', 'applications', 'of', 'this', 'research', 'include', 'guidance', 'for', 'the', 'development', 'of', 'perspective', 'flight', 'display', 'standards', 'and', 'as', 'a', 'basis', 'for', 'flight', 'training', 'requirements']
|
67 |
+
Document BIO Tags: ['O', 'O', 'O', 'O', 'O', 'O', 'O', 'B', 'I', 'O', 'B', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'B', 'I', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'B', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'B', 'O', 'O', 'O', 'B', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'B', 'I', 'O', 'O', 'O', 'B', 'I', 'I', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'B', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'B', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O']
|
68 |
+
Extractive/present Keyphrases: ['flight simulator', 'pilots', 'cockpit', 'flight guidance', 'situation awareness', 'flight path awareness']
|
69 |
+
Abstractive/absent Keyphrases: ['highway-in-the-sky display', 'human factors', 'aircraft display']
|
70 |
+
|
71 |
+
-----------
|
72 |
+
|
73 |
+
Sample from test dataset split
|
74 |
+
Fields in the sample: ['id', 'document', 'doc_bio_tags', 'extractive_keyphrases', 'abstractive_keyphrases', 'other_metadata']
|
75 |
+
Tokenized Document: ['A', 'new', 'graphical', 'user', 'interface', 'for', 'fast', 'construction', 'of', 'computation', 'phantoms', 'and', 'MCNP', 'calculations', ':', 'application', 'to', 'calibration', 'of', 'in', 'vivo', 'measurement', 'systems', 'Reports', 'on', 'a', 'new', 'utility', 'for', 'development', 'of', 'computational', 'phantoms', 'for', 'Monte', 'Carlo', 'calculations', 'and', 'data', 'analysis', 'for', 'in', 'vivo', 'measurements', 'of', 'radionuclides', 'deposited', 'in', 'tissues', '.', 'The', 'individual', 'properties', 'of', 'each', 'worker', 'can', 'be', 'acquired', 'for', 'a', 'rather', 'precise', 'geometric', 'representation', 'of', 'his', '-LRB-', 'her', '-RRB-', 'anatomy', ',', 'which', 'is', 'particularly', 'important', 'for', 'low', 'energy', 'gamma', 'ray', 'emitting', 'sources', 'such', 'as', 'thorium', ',', 'uranium', ',', 'plutonium', 'and', 'other', 'actinides', '.', 'The', 'software', 'enables', 'automatic', 'creation', 'of', 'an', 'MCNP', 'input', 'data', 'file', 'based', 'on', 'scanning', 'data', '.', 'The', 'utility', 'includes', 'segmentation', 'of', 'images', 'obtained', 'with', 'either', 'computed', 'tomography', 'or', 'magnetic', 'resonance', 'imaging', 'by', 'distinguishing', 'tissues', 'according', 'to', 'their', 'signal', '-LRB-', 'brightness', '-RRB-', 'and', 'specification', 'of', 'the', 'source', 'and', 'detector', '.', 'In', 'addition', ',', 'a', 'coupling', 'of', 'individual', 'voxels', 'within', 'the', 'tissue', 'is', 'used', 'to', 'reduce', 'the', 'memory', 'demand', 'and', 'to', 'increase', 'the', 'calculational', 'speed', '.', 'The', 'utility', 'was', 'tested', 'for', 'low', 'energy', 'emitters', 'in', 'plastic', 'and', 'biological', 'tissues', 'as', 'well', 'as', 'for', 'computed', 'tomography', 'and', 'magnetic', 'resonance', 'imaging', 'scanning', 'information']
|
76 |
+
Document BIO Tags: ['O', 'O', 'B', 'I', 'I', 'O', 'O', 'O', 'O', 'B', 'I', 'O', 'O', 'O', 'O', 'O', 'O', 'B', 'O', 'B', 'I', 'I', 'I', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'B', 'I', 'O', 'B', 'I', 'I', 'O', 'O', 'O', 'O', 'B', 'I', 'I', 'O', 'B', 'O', 'O', 'B', 'O', 'O', 'O', 'O', 'O', 'O', 'B', 'O', 'O', 'O', 'O', 'O', 'O', 'B', 'I', 'I', 'O', 'O', 'O', 'O', 'O', 'B', 'O', 'O', 'O', 'O', 'O', 'O', 'B', 'I', 'I', 'I', 'I', 'I', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'B', 'O', 'O', 'B', 'O', 'B', 'I', 'O', 'O', 'B', 'I', 'I', 'I', 'O', 'O', 'B', 'I', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'B', 'I', 'O', 'O', 'O', 'O', 'O', 'O', 'B', 'O', 'O', 'O', 'B', 'O', 'B', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'B', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'B', 'I', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'B', 'I', 'O', 'O', 'O', 'O', 'B', 'I', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'B', 'O', 'O', 'B', 'O', 'O', 'O', 'O', 'B', 'I', 'O', 'B', 'I', 'I', 'I', 'I']
|
77 |
+
Extractive/present Keyphrases: ['computational phantoms', 'monte carlo calculations', 'in vivo measurements', 'radionuclides', 'tissues', 'worker', 'precise geometric representation', 'mcnp input data file', 'scanning data', 'computed tomography', 'brightness', 'graphical user interface', 'computation phantoms', 'calibration', 'in vivo measurement systems', 'signal', 'detector', 'individual voxels', 'memory demand', 'calculational speed', 'plastic', 'magnetic resonance imaging scanning information', 'anatomy', 'low energy gamma ray emitting sources', 'actinides', 'software', 'automatic creation']
|
78 |
+
Abstractive/absent Keyphrases: ['th', 'u', 'pu', 'biological tissues']
|
79 |
+
|
80 |
+
-----------
|
81 |
+
```
|
82 |
+
|
83 |
+
### Keyphrase Extraction
|
84 |
+
```python
|
85 |
+
from datasets import load_dataset
|
86 |
+
|
87 |
+
# get the dataset only for keyphrase extraction
|
88 |
+
dataset = load_dataset("midas/kptimes", "extraction")
|
89 |
+
|
90 |
+
print("Samples for Keyphrase Extraction")
|
91 |
+
|
92 |
+
# sample from the train split
|
93 |
+
print("Sample from training data split")
|
94 |
+
train_sample = dataset["train"][0]
|
95 |
+
print("Fields in the sample: ", [key for key in train_sample.keys()])
|
96 |
+
print("Tokenized Document: ", train_sample["document"])
|
97 |
+
print("Document BIO Tags: ", train_sample["doc_bio_tags"])
|
98 |
+
print("\n-----------\n")
|
99 |
+
|
100 |
+
# sample from the validation split
|
101 |
+
print("Sample from validation data split")
|
102 |
+
validation_sample = dataset["validation"][0]
|
103 |
+
print("Fields in the sample: ", [key for key in validation_sample.keys()])
|
104 |
+
print("Tokenized Document: ", validation_sample["document"])
|
105 |
+
print("Document BIO Tags: ", validation_sample["doc_bio_tags"])
|
106 |
+
print("\n-----------\n")
|
107 |
+
|
108 |
+
# sample from the test split
|
109 |
+
print("Sample from test data split")
|
110 |
+
test_sample = dataset["test"][0]
|
111 |
+
print("Fields in the sample: ", [key for key in test_sample.keys()])
|
112 |
+
print("Tokenized Document: ", test_sample["document"])
|
113 |
+
print("Document BIO Tags: ", test_sample["doc_bio_tags"])
|
114 |
+
print("\n-----------\n")
|
115 |
+
```
|
116 |
+
|
117 |
+
### Keyphrase Generation
|
118 |
+
```python
|
119 |
+
# get the dataset only for keyphrase generation
|
120 |
+
dataset = load_dataset("midas/kptimes", "generation")
|
121 |
+
|
122 |
+
print("Samples for Keyphrase Generation")
|
123 |
+
|
124 |
+
# sample from the train split
|
125 |
+
print("Sample from training data split")
|
126 |
+
train_sample = dataset["train"][0]
|
127 |
+
print("Fields in the sample: ", [key for key in train_sample.keys()])
|
128 |
+
print("Tokenized Document: ", train_sample["document"])
|
129 |
+
print("Extractive/present Keyphrases: ", train_sample["extractive_keyphrases"])
|
130 |
+
print("Abstractive/absent Keyphrases: ", train_sample["abstractive_keyphrases"])
|
131 |
+
print("\n-----------\n")
|
132 |
+
|
133 |
+
# sample from the validation split
|
134 |
+
print("Sample from validation data split")
|
135 |
+
validation_sample = dataset["validation"][0]
|
136 |
+
print("Fields in the sample: ", [key for key in validation_sample.keys()])
|
137 |
+
print("Tokenized Document: ", validation_sample["document"])
|
138 |
+
print("Extractive/present Keyphrases: ", validation_sample["extractive_keyphrases"])
|
139 |
+
print("Abstractive/absent Keyphrases: ", validation_sample["abstractive_keyphrases"])
|
140 |
+
print("\n-----------\n")
|
141 |
+
|
142 |
+
# sample from the test split
|
143 |
+
print("Sample from test data split")
|
144 |
+
test_sample = dataset["test"][0]
|
145 |
+
print("Fields in the sample: ", [key for key in test_sample.keys()])
|
146 |
+
print("Tokenized Document: ", test_sample["document"])
|
147 |
+
print("Extractive/present Keyphrases: ", test_sample["extractive_keyphrases"])
|
148 |
+
print("Abstractive/absent Keyphrases: ", test_sample["abstractive_keyphrases"])
|
149 |
+
print("\n-----------\n")
|
150 |
+
```
|
151 |
+
## Citation Information
|
152 |
+
```
|
153 |
+
@inproceedings{hulth2003improved,
|
154 |
+
title={Improved automatic keyword extraction given more linguistic knowledge},
|
155 |
+
author={Hulth, Anette},
|
156 |
+
booktitle={Proceedings of the 2003 conference on Empirical methods in natural language processing},
|
157 |
+
pages={216--223},
|
158 |
+
year={2003}
|
159 |
+
}
|
160 |
+
```
|
161 |
+
|
162 |
+
## Contributions
|
163 |
+
Thanks to [@debanjanbhucs](https://github.com/debanjanbhucs), [@dibyaaaaax](https://github.com/dibyaaaaax) and [@ad6398](https://github.com/ad6398) for adding this dataset
|