HIMYM_Script / HIMYM_Script.py
moon23k's picture
Update HIMYM_Script.py
2e8ca9b verified
import json
import datasets as ds
_DESCRIPTION = """
Description of the dataset.
"""
_CITATION = """
Citation for the dataset.
"""
_LICENCE = """
License information for the dataset.
"""
_FEATURES = ds.Features({
"x": ds.Value(dtype="string"),
"y": ds.Value(dtype="string")
})
class HIMYMConfig(ds.BuilderConfig):
def __init__(self, **kwargs):
super(HIMYMConfig, self).__init__(**kwargs)
self.version = ds.Version("1.0.3")
self.features = _FEATURES
self.citation = _CITATION
class HIMYM(ds.GeneratorBasedBuilder):
BUILDER_CONFIGS = [
HIMYMConfig(name="ted"),
HIMYMConfig(name="barney"),
HIMYMConfig(name="marshall"),
HIMYMConfig(name="rily"),
HIMYMConfig(name="robin"),
]
def _info(self) -> ds.DatasetInfo:
"""Returns the dataset metadata."""
return ds.DatasetInfo(
description=_DESCRIPTION,
features=self.config.features,
citation=self.config.citation,
license=_LICENCE,
supervised_keys=None
)
def _split_generators(self, dl_manager: ds.DownloadManager):
"""Returns SplitGenerators"""
base_url = "https://huggingface.co/datasets/moon23k/HIMYM_Script/resolve/main/data/"
data_files = {
"ted": {
"train": base_url + "ted/train.json",
"validation": base_url + "ted/valid.json",
"test": base_url + "ted/test.json"
},
"barney": {
"train": base_url + "barney/train.json",
"validation": base_url + "barney/valid.json",
"test": base_url + "barney/test.json"
},
"marshall": {
"train": base_url + "marshall/train.json",
"validation": base_url + "marshall/valid.json",
"test": base_url + "marshall/test.json"
},
"rily": {
"train": base_url + "rily/train.json",
"validation": base_url + "rily/valid.json",
"test": base_url + "rily/test.json"
},
"robin": {
"train": base_url + "robin/train.json",
"validation": base_url + "robin/valid.json",
"test": base_url + "robin/test.json"
},
}
downloaded_files = dl_manager.download_and_extract(data_files[self.config.name])
return [
ds.SplitGenerator(
name=ds.Split.TRAIN,
gen_kwargs={"filepath": downloaded_files["train"]},
),
ds.SplitGenerator(
name=ds.Split.VALIDATION,
gen_kwargs={"filepath": downloaded_files["validation"]},
),
ds.SplitGenerator(
name=ds.Split.TEST,
gen_kwargs={"filepath": downloaded_files["test"]},
),
]
def _generate_examples(self, filepath):
with open(filepath, encoding="utf-8") as f:
data = json.load(f)
for idx, example in enumerate(data):
yield idx, example