File size: 5,988 Bytes
2a92119 e345d5d 2a92119 3bd1229 0670536 2a92119 13bcdb1 2a92119 bb43d96 2a92119 fdda653 2a92119 b5ed5dc 2a92119 0670536 2a92119 0b998a2 2a92119 0670536 2a92119 0670536 2a92119 0670536 2a92119 0670536 7a8e3b7 b5ed5dc 0670536 2a92119 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 |
"""
Loading script for the Food Vision 199 classes dataset.
See the template: https://github.com/huggingface/datasets/blob/main/templates/new_dataset_script.py
See the example for Food101: https://huggingface.co/datasets/food101/blob/main/food101.py
See another example: https://huggingface.co/datasets/davanstrien/encyclopedia_britannica/blob/main/encyclopedia_britannica.py
"""
import datasets
import os
import requests
import pandas as pd
from datasets.tasks import ImageClassification
# Print datasets version
print(f"Datasets version: {datasets.__version__}")
# Set verbosity to 10
datasets.logging.set_verbosity(10)
print(f"Verbosity level: {datasets.logging.get_verbosity()}")
_HOMEPAGE = "https://www.nutrify.app"
_LICENSE = "TODO"
_CITATION = "TODO"
_DESCRIPTION = "Images of 199 food classes from the Nutrify app."
# # Download class_names.txt and read it
# url = "https://huggingface.co/datasets/mrdbourke/food_vision_199_classes/blob/main/class_names.txt"
# r = requests.get(url, allow_redirects=True)
# open("class_names.txt", "wb").write(r.content)
# with open("class_names.txt", "r") as f:
# _NAMES = f.read().splitlines()
# Create list of class names
_NAMES = ['almond_butter',
'almonds',
'apple',
'apricot',
'asparagus',
'avocado',
'bacon',
'bacon_and_egg_burger',
'bagel',
'baklava',
'banana',
'banana_bread',
'barbecue_sauce',
'beans',
'beef',
'beef_curry',
'beef_mince',
'beef_stir_fry',
'beer',
'beetroot',
'biltong',
'blackberries',
'blueberries',
'bok_choy',
'bread',
'broccoli',
'broccolini',
'brownie',
'brussel_sprouts',
'burrito',
'butter',
'cabbage',
'calamari',
'candy',
'capsicum',
'carrot',
'cashews',
'cauliflower',
'celery',
'cheese',
'cheeseburger',
'cherries',
'chicken_breast',
'chicken_thighs',
'chicken_wings',
'chilli',
'chimichurri',
'chocolate',
'chocolate_cake',
'coconut',
'coffee',
'coleslaw',
'cookies',
'coriander',
'corn',
'corn_chips',
'cream',
'croissant',
'crumbed_chicken',
'cucumber',
'cupcake',
'daikon_radish',
'dates',
'donuts',
'dragonfruit',
'eggplant',
'eggs',
'enoki_mushroom',
'fennel',
'figs',
'french_toast',
'fried_rice',
'fries',
'fruit_juice',
'garlic',
'garlic_bread',
'ginger',
'goji_berries',
'granola',
'grapefruit',
'grapes',
'green_beans',
'green_onion',
'guacamole',
'guava',
'gyoza',
'ham',
'honey',
'hot_chocolate',
'ice_coffee',
'ice_cream',
'iceberg_lettuce',
'jerusalem_artichoke',
'kale',
'karaage_chicken',
'kimchi',
'kiwi_fruit',
'lamb_chops',
'leek',
'lemon',
'lentils',
'lettuce',
'lime',
'mandarin',
'mango',
'maple_syrup',
'mashed_potato',
'mayonnaise',
'milk',
'miso_soup',
'mushrooms',
'nectarines',
'noodles',
'nuts',
'olive_oil',
'olives',
'omelette',
'onion',
'orange',
'orange_juice',
'oysters',
'pain_au_chocolat',
'pancakes',
'papaya',
'parsley',
'parsnips',
'passionfruit',
'pasta',
'pawpaw',
'peach',
'pear',
'peas',
'pickles',
'pineapple',
'pizza',
'plum',
'pomegranate',
'popcorn',
'pork_belly',
'pork_chop',
'pork_loins',
'porridge',
'potato_bake',
'potato_chips',
'potato_scallop',
'potatoes',
'prawns',
'pumpkin',
'radish',
'ramen',
'raspberries',
'red_onion',
'red_wine',
'rhubarb',
'rice',
'roast_beef',
'roast_pork',
'roast_potatoes',
'rockmelon',
'rosemary',
'salad',
'salami',
'salmon',
'salsa',
'salt',
'sandwich',
'sardines',
'sausage_roll',
'sausages',
'scrambled_eggs',
'seaweed',
'shallots',
'snow_peas',
'soda',
'soy_sauce',
'spaghetti_bolognese',
'spinach',
'sports_drink',
'squash',
'starfruit',
'steak',
'strawberries',
'sushi',
'sweet_potato',
'tacos',
'tamarillo',
'taro',
'tea',
'toast',
'tofu',
'tomato',
'tomato_chutney',
'tomato_sauce',
'turnip',
'watermelon',
'white_onion',
'white_wine',
'yoghurt',
'zucchini']
# Create Food199 class
class Food199(datasets.GeneratorBasedBuilder):
"""Food199 Images dataset"""
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"image": datasets.Image(),
"label": datasets.ClassLabel(names=_NAMES)
}
),
supervised_keys=("image", "label"),
homepage=_HOMEPAGE,
citation=_CITATION,
license=_LICENSE
)
def _split_generators(self, dl_manager):
"""
This function returns the logic to split the dataset into different splits as well as labels.
"""
annotations_csv = dl_manager.download("annotations_with_links.csv")
print(annotations_csv)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"annotations": annotations_csv,
"split": "train"
}
),
# datasets.SplitGenerator(
# name=datasets.Split.TEST,
# gen_kwargs={
# "annotations": annotations_csv,
# "split": "test"
# }
# )
]
def _generate_examples(self, annotations, split):
"""
This function takes in the kwargs from the _split_generators method and can then yield information from them.
"""
annotations_df = pd.read_csv(annotations, low_memory=False)
if split == "train":
annotations = annotations_df[["image", "label"]][annotations_df["split"] == "train"].to_dict(orient="records")
elif split == "test":
annotations = annotations_df[["image", "label"]][annotations_df["split"] == "test"].to_dict(orient="records")
for id_, row in enumerate(annotations):
# print(row["image"])
row["image"] = str(row.pop("image"))
row["label"] = row.pop("label")
# print(id_, row)
yield id_, row
|