misophoniaSounds / misophoniaSounds.py
mskov's picture
Update misophoniaSounds.py
5e4e13f
raw
history blame
2.85 kB
import os
import re
import datasets
from datasets import load_dataset, load_dataset_builder
from datasets.tasks import AutomaticSpeechRecognition
_HOMEPAGE = "https://huggingface.co/datasets/mskov/misophoniaSounds"
_CITATION = ""
_DESCRIPTION = "Dataset for misophonia inducing sound detection"
_DATA_URLS = {
"https://huggingface.co/datasets/mskov/misophoniaSounds/data/audio/all_audio.tar.gz"
#"data/all_audio.tar.gz"
}
_PROMPTS_URLS ={
"train": "https://huggingface.co/datasets/mskov/misophoniaSounds/data/train/train_prompts.csv",
"test": "https://huggingface.co/datasets/mskov/misophoniaSounds/data/test/test_prompts.csv"
#"train": "data/rain_prompts.csv",
#"test": "data/test_prompts.csv"
}
_NAMES = ["breathing", "chewing", "coughing", "mouth_sounds", "lip_smack", "sniffling", "yawn"]
class Miso(datasets.GeneratorBasedBuilder):
"""Misophonia Audio"""
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"audio": datasets.Audio(sampling_rate=16000),
#"transcript": datasets.features.ClassLabel(names=_NAMES),
"transcript": datasets.Value("string"),
}
),
#supervised_keys=("audio"),
supervised_keys=None,
homepage=_HOMEPAGE,
citation=_CITATION,
task_templates=[AutomaticSpeechRecognition(audio_column="audio", transcription_column="transcript")],
)
def _split_generators(self, dl_manager):
#data_files = dl_manager.download_and_extract(_DATA_URLS),
prompts_paths = dl_manager.download_and_extract(_PROMPTS_URLS),
audio_files = dl_manager.download_and_extract(_DATA_URLS),
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"audio_files": dl_manager.iter_archive(audio_files),
"filepath": prompts_paths["train"],
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"audio_files": dl_manager.iter_archive(audio_files),
"filepath": prompts_paths["test"],
},
),
]
def _generate_examples(self, audio_files):
"""This function returns the examples in the raw (text) form."""
idx = 0
for fpath, audio in audio_files:
#label = filepath.split('/')[-1][:-4]
#description = description.replace('_', ' ')
label = fpath.split(',')
print(label)
yield idx, {
"audio": {"path": fpath, "bytes": audio.read()},
"text": label,
}
idx += 1