|
from typing import List |
|
|
|
import datasets |
|
|
|
import pandas |
|
|
|
|
|
VERSION = datasets.Version("1.0.0") |
|
|
|
|
|
DESCRIPTION = "Hayes efficiency dataset from the UCI repository." |
|
_HOMEPAGE = "https://archive-beta.ics.uci.edu/dataset/242/hayes+efficiency" |
|
_URLS = ("https://archive-beta.ics.uci.edu/dataset/30/hayes+method+choice") |
|
_CITATION = """ |
|
@misc{misc_hayes_efficiency_242, |
|
author = {Tsanas,Athanasios & Xifara,Angeliki}, |
|
title = {{Hayes efficiency}}, |
|
year = {2012}, |
|
howpublished = {UCI Machine Learning Repository}, |
|
note = {{DOI}: \\url{10.24432/C51307}} |
|
}""" |
|
|
|
|
|
_BASE_FEATURE_NAMES = [ |
|
"name", |
|
"hobby", |
|
"age", |
|
"educational_level", |
|
"marital_level", |
|
"class" |
|
] |
|
urls_per_split = { |
|
"train": "https://huggingface.co/datasets/mstz/hayes_roth/raw/main/hayes.data" |
|
} |
|
features_types_per_config = { |
|
"hayes": { |
|
"hobby": datasets.Value("string"), |
|
"age": datasets.Value("int8"), |
|
"educational_level": datasets.Value("int8"), |
|
"marital_level": datasets.Value("string"), |
|
"class": datasets.ClassLabel(num_classes=3) |
|
}, |
|
"hayes_1": { |
|
"hobby": datasets.Value("string"), |
|
"age": datasets.Value("int8"), |
|
"educational_level": datasets.Value("int8"), |
|
"marital_level": datasets.Value("string"), |
|
"class": datasets.ClassLabel(num_classes=2) |
|
}, |
|
"hayes_2": { |
|
"hobby": datasets.Value("string"), |
|
"age": datasets.Value("int8"), |
|
"educational_level": datasets.Value("int8"), |
|
"marital_level": datasets.Value("string"), |
|
"class": datasets.ClassLabel(num_classes=2) |
|
}, |
|
"hayes_3": { |
|
"hobby": datasets.Value("string"), |
|
"age": datasets.Value("int8"), |
|
"educational_level": datasets.Value("int8"), |
|
"marital_level": datasets.Value("string"), |
|
"class": datasets.ClassLabel(num_classes=2) |
|
} |
|
} |
|
features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config} |
|
|
|
|
|
class HayesConfig(datasets.BuilderConfig): |
|
def __init__(self, **kwargs): |
|
super(HayesConfig, self).__init__(version=VERSION, **kwargs) |
|
self.features = features_per_config[kwargs["name"]] |
|
|
|
|
|
class Hayes(datasets.GeneratorBasedBuilder): |
|
|
|
DEFAULT_CONFIG = "hayes" |
|
BUILDER_CONFIGS = [ |
|
HayesConfig(name="hayes", description="Hayes dataset."), |
|
HayesConfig(name="hayes_1", description="Hayes for binary classification (is example of class 1?)."), |
|
HayesConfig(name="hayes_2", description="Hayes for binary classification (is example of class 2?)."), |
|
HayesConfig(name="hayes_3", description="Hayes for binary classification (is example of class 3?).") |
|
] |
|
|
|
|
|
def _info(self): |
|
info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE, |
|
features=features_per_config[self.config.name]) |
|
|
|
return info |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
downloads = dl_manager.download_and_extract(urls_per_split) |
|
|
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]}) |
|
] |
|
|
|
def _generate_examples(self, filepath: str): |
|
data = pandas.read_csv(filepath, header=None) |
|
data = self.preprocess(data) |
|
|
|
for row_id, row in data.iterrows(): |
|
data_row = dict(row) |
|
|
|
yield row_id, data_row |
|
|
|
def preprocess(self, data: pandas.DataFrame) -> pandas.DataFrame: |
|
data.columns = _BASE_FEATURE_NAMES |
|
data.drop("name", axis="columns", inplace=True) |
|
|
|
if self.config.name == "hayes_1": |
|
data.loc[:, "class"] = data["class"].apply(lambda x: 1 if x == 1 else 0) |
|
elif self.config.name == "hayes_2": |
|
data.loc[:, "class"] = data["class"].apply(lambda x: 1 if x == 2 else 0) |
|
elif self.config.name == "hayes_3": |
|
data.loc[:, "class"] = data["class"].apply(lambda x: 1 if x == 3 else 0) |
|
else: |
|
data.loc[:, "class"] = data["class"].apply(lambda x: x - 1) |
|
|
|
|
|
return data |
|
|