mstz commited on
Commit
5f3e34e
1 Parent(s): 46def4a

Upload 3 files

Browse files
Files changed (3) hide show
  1. README.md +37 -1
  2. hayes_roth.data +132 -0
  3. hayes_roth.py +119 -0
README.md CHANGED
@@ -1,3 +1,39 @@
1
  ---
2
- license: cc-by-4.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ language:
3
+ - en
4
+ tags:
5
+ - hayes
6
+ - tabular_classification
7
+ - binary_classification
8
+ - multiclass_classification
9
+ pretty_name: Hayes evaluation
10
+ size_categories:
11
+ - n<1k
12
+ task_categories: # Full list at https://github.com/huggingface/hub-docs/blob/main/js/src/lib/interfaces/Types.ts
13
+ - tabular-classification
14
+ configs:
15
+ - hayes
16
+ - hayes_1
17
+ - hayes_2
18
+ - hayes_3
19
+
20
  ---
21
+ # Hayes
22
+ The [Hayes-Roth dataset](https://archive-beta.ics.uci.edu/dataset/44/hayes+roth) from the [UCI repository](https://archive-beta.ics.uci.edu).
23
+
24
+ # Configurations and tasks
25
+ | **Configuration** | **Task** | **Description** |
26
+ |-------------------|---------------------------|--------------------------------|
27
+ | hayes | Multiclass classification | Classify hayes type. |
28
+ | hayes_1 | Binary classification | Is this instance of class 1? |
29
+ | hayes_2 | Binary classification | Is this instance of class 2? |
30
+ | hayes_3 | Binary classification | Is this instance of class 3? |
31
+
32
+
33
+
34
+ # Usage
35
+ ```python
36
+ from datasets import load_dataset
37
+
38
+ dataset = load_dataset("mstz/hayes", "hayes")["train"]
39
+ ```
hayes_roth.data ADDED
@@ -0,0 +1,132 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 92,2,1,1,2,1
2
+ 10,2,1,3,2,2
3
+ 83,3,1,4,1,3
4
+ 61,2,4,2,2,3
5
+ 107,1,1,3,4,3
6
+ 113,1,1,3,2,2
7
+ 80,3,1,3,2,2
8
+ 125,3,4,2,4,3
9
+ 36,2,2,1,1,1
10
+ 105,3,2,1,1,1
11
+ 81,1,2,1,1,1
12
+ 122,2,2,3,4,3
13
+ 94,1,1,2,1,1
14
+ 60,2,1,2,2,2
15
+ 8,2,4,1,4,3
16
+ 20,1,1,3,3,1
17
+ 85,3,2,1,2,2
18
+ 50,1,2,1,1,1
19
+ 68,3,3,2,1,1
20
+ 89,3,1,3,2,1
21
+ 52,1,2,2,1,2
22
+ 19,3,2,1,3,1
23
+ 118,2,1,2,1,1
24
+ 16,3,2,1,3,1
25
+ 91,2,3,2,1,1
26
+ 79,3,2,2,1,2
27
+ 23,3,2,1,3,2
28
+ 25,2,1,2,2,2
29
+ 30,1,1,3,2,1
30
+ 57,3,2,1,1,1
31
+ 3,1,4,1,1,3
32
+ 114,2,2,1,3,1
33
+ 37,1,2,1,3,2
34
+ 66,1,1,1,2,1
35
+ 110,2,4,3,1,3
36
+ 116,3,1,2,2,2
37
+ 88,1,1,2,2,2
38
+ 77,3,2,2,1,2
39
+ 82,1,2,1,2,2
40
+ 64,3,4,3,2,3
41
+ 84,2,2,2,1,2
42
+ 86,2,2,1,2,2
43
+ 6,3,2,1,3,2
44
+ 74,3,2,1,1,1
45
+ 106,3,1,2,1,1
46
+ 115,1,2,1,3,2
47
+ 130,2,1,1,2,1
48
+ 54,1,1,1,2,1
49
+ 33,1,2,2,3,2
50
+ 67,3,3,1,1,1
51
+ 69,3,3,3,1,1
52
+ 39,3,2,1,2,2
53
+ 53,3,2,1,2,2
54
+ 127,3,1,2,1,1
55
+ 96,1,1,1,2,1
56
+ 121,2,1,3,2,1
57
+ 70,2,2,2,1,2
58
+ 123,2,1,2,1,1
59
+ 42,2,2,1,3,1
60
+ 78,2,1,2,2,2
61
+ 11,1,2,4,2,3
62
+ 129,2,2,1,2,2
63
+ 128,1,1,2,4,3
64
+ 5,1,3,2,1,1
65
+ 4,2,4,4,2,3
66
+ 95,2,3,2,1,1
67
+ 73,3,1,2,2,2
68
+ 26,1,1,2,2,2
69
+ 48,1,3,2,4,3
70
+ 104,1,1,2,2,2
71
+ 102,3,1,4,2,3
72
+ 2,2,1,3,2,2
73
+ 41,1,1,3,2,2
74
+ 119,3,1,3,2,1
75
+ 75,1,2,4,4,3
76
+ 47,1,4,2,1,3
77
+ 93,2,1,2,1,1
78
+ 46,3,4,1,2,3
79
+ 132,2,2,1,1,1
80
+ 108,1,1,2,1,1
81
+ 18,2,2,4,3,3
82
+ 62,3,1,2,2,2
83
+ 120,1,1,3,2,1
84
+ 35,1,2,1,3,1
85
+ 27,1,4,4,1,3
86
+ 98,3,3,3,2,2
87
+ 109,2,2,1,3,2
88
+ 31,3,3,2,1,2
89
+ 112,1,1,1,3,1
90
+ 34,2,2,1,2,2
91
+ 63,2,2,2,1,2
92
+ 65,2,3,2,3,2
93
+ 117,1,3,2,1,2
94
+ 56,2,2,1,2,2
95
+ 59,1,1,1,2,1
96
+ 76,3,2,2,1,2
97
+ 1,3,2,1,1,1
98
+ 28,1,1,2,1,1
99
+ 22,3,1,4,4,3
100
+ 29,3,3,2,1,2
101
+ 111,2,3,2,1,2
102
+ 97,2,1,3,1,1
103
+ 49,1,2,1,2,2
104
+ 51,3,1,1,2,1
105
+ 87,2,2,4,1,3
106
+ 58,1,2,2,1,2
107
+ 32,2,3,2,1,2
108
+ 72,2,2,1,4,3
109
+ 55,1,4,2,3,3
110
+ 103,2,2,1,1,1
111
+ 7,1,2,1,1,1
112
+ 99,2,2,3,2,2
113
+ 15,1,3,2,1,1
114
+ 126,3,1,2,1,1
115
+ 45,3,1,1,2,1
116
+ 101,3,3,1,4,3
117
+ 100,2,3,4,1,3
118
+ 24,1,2,3,3,2
119
+ 124,3,3,2,2,2
120
+ 13,3,3,4,2,3
121
+ 14,1,2,2,1,2
122
+ 38,2,1,1,4,3
123
+ 71,3,1,2,2,2
124
+ 43,3,2,2,4,3
125
+ 131,2,3,1,3,1
126
+ 17,2,1,1,2,1
127
+ 12,3,4,1,3,3
128
+ 44,1,1,4,3,3
129
+ 40,2,1,2,1,1
130
+ 90,1,2,1,2,2
131
+ 21,1,2,2,1,2
132
+ 9,3,1,1,2,1
hayes_roth.py ADDED
@@ -0,0 +1,119 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import List
2
+ from functools import partial
3
+
4
+ import datasets
5
+
6
+ import pandas
7
+
8
+
9
+ VERSION = datasets.Version("1.0.0")
10
+
11
+
12
+ DESCRIPTION = "Hayes efficiency dataset from the UCI repository."
13
+ _HOMEPAGE = "https://archive-beta.ics.uci.edu/dataset/242/hayes+efficiency"
14
+ _URLS = ("https://archive-beta.ics.uci.edu/dataset/30/hayes+method+choice")
15
+ _CITATION = """
16
+ @misc{misc_hayes_efficiency_242,
17
+ author = {Tsanas,Athanasios & Xifara,Angeliki},
18
+ title = {{Hayes efficiency}},
19
+ year = {2012},
20
+ howpublished = {UCI Machine Learning Repository},
21
+ note = {{DOI}: \\url{10.24432/C51307}}
22
+ }"""
23
+
24
+ # Dataset info
25
+ _BASE_FEATURE_NAMES = [
26
+ "name",
27
+ "hobby",
28
+ "age",
29
+ "educational_level",
30
+ "marital_level",
31
+ "class"
32
+ ]
33
+ urls_per_split = {
34
+ "train": "https://huggingface.co/datasets/mstz/hayes/raw/main/hayes_roth.data"
35
+ }
36
+ features_types_per_config = {
37
+ "hayes": {
38
+ "hobby": datasets.Value("string"),
39
+ "age": datasets.Value("int8"),
40
+ "educational_level": datasets.Value("int8"),
41
+ "marital_level": datasets.Value("string"),
42
+ "class": datasets.ClassLabel(num_classes=3)
43
+ },
44
+ "hayes_1": {
45
+ "hobby": datasets.Value("string"),
46
+ "age": datasets.Value("int8"),
47
+ "educational_level": datasets.Value("int8"),
48
+ "marital_level": datasets.Value("string"),
49
+ "class": datasets.ClassLabel(num_classes=2)
50
+ },
51
+ "hayes_2": {
52
+ "hobby": datasets.Value("string"),
53
+ "age": datasets.Value("int8"),
54
+ "educational_level": datasets.Value("int8"),
55
+ "marital_level": datasets.Value("string"),
56
+ "class": datasets.ClassLabel(num_classes=2)
57
+ },
58
+ "hayes_3": {
59
+ "hobby": datasets.Value("string"),
60
+ "age": datasets.Value("int8"),
61
+ "educational_level": datasets.Value("int8"),
62
+ "marital_level": datasets.Value("string"),
63
+ "class": datasets.ClassLabel(num_classes=2)
64
+ }
65
+ }
66
+ features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config}
67
+
68
+
69
+ class HayesConfig(datasets.BuilderConfig):
70
+ def __init__(self, **kwargs):
71
+ super(HayesConfig, self).__init__(version=VERSION, **kwargs)
72
+ self.features = features_per_config[kwargs["name"]]
73
+
74
+
75
+ class Hayes(datasets.GeneratorBasedBuilder):
76
+ # dataset versions
77
+ DEFAULT_CONFIG = "hayes"
78
+ BUILDER_CONFIGS = [
79
+ HayesConfig(name="hayes", description="Hayes dataset."),
80
+ HayesConfig(name="hayes_1", description="Hayes for binary classification (is example of class 1?)."),
81
+ HayesConfig(name="hayes_2", description="Hayes for binary classification (is example of class 2?)."),
82
+ HayesConfig(name="hayes_3", description="Hayes for binary classification (is example of class 3?).")
83
+ ]
84
+
85
+
86
+ def _info(self):
87
+ info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE,
88
+ features=features_per_config[self.config.name])
89
+
90
+ return info
91
+
92
+ def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
93
+ downloads = dl_manager.download_and_extract(urls_per_split)
94
+
95
+ return [
96
+ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]})
97
+ ]
98
+
99
+ def _generate_examples(self, filepath: str):
100
+ data = pandas.read_csv(filepath, header=None)
101
+ data = self.preprocess(data)
102
+
103
+ for row_id, row in data.iterrows():
104
+ data_row = dict(row)
105
+
106
+ yield row_id, data_row
107
+
108
+ def preprocess(self, data: pandas.DataFrame) -> pandas.DataFrame:
109
+ data.columns = _BASE_FEATURE_NAMES
110
+ data.drop("name", axis="columns", inplace=True)
111
+
112
+ if self.config.name == "hayes_1":
113
+ data.loc[:, "class"] = data["class"].apply(lambda x: 1 if x == 1 else 0)
114
+ elif self.config.name == "hayes_2":
115
+ data.loc[:, "class"] = data["class"].apply(lambda x: 1 if x == 2 else 0)
116
+ elif self.config.name == "hayes_3":
117
+ data.loc[:, "class"] = data["class"].apply(lambda x: 1 if x == 3 else 0)
118
+
119
+ return data