Datasets:
Upload 3 files
Browse files- README.md +25 -1
- letter.data +0 -0
- letter.py +205 -0
README.md
CHANGED
@@ -1,3 +1,27 @@
|
|
1 |
---
|
2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
tags:
|
5 |
+
- letter
|
6 |
+
- tabular_classification
|
7 |
+
- multiclass_classification
|
8 |
+
- binary_classification
|
9 |
+
- UCI
|
10 |
+
pretty_name: Letter
|
11 |
+
task_categories: # Full list at https://github.com/huggingface/hub-docs/blob/main/js/src/lib/interfaces/Types.ts
|
12 |
+
- tabular-classification
|
13 |
+
configs:
|
14 |
+
- letter
|
15 |
---
|
16 |
+
# Letter
|
17 |
+
The [Letter dataset](https://archive-beta.ics.uci.edu/dataset/59/letter+recognition) from the [UCI repository](https://archive-beta.ics.uci.edu/).
|
18 |
+
Letter recognition.
|
19 |
+
|
20 |
+
# Configurations and tasks
|
21 |
+
| **Configuration** | **Task** | **Description** |
|
22 |
+
|-----------------------|---------------------------|-------------------------|
|
23 |
+
| letter | Multiclass classification.| |
|
24 |
+
| A | Binary classification. | Is this letter A? |
|
25 |
+
| B | Binary classification. | Is this letter B? |
|
26 |
+
| C | Binary classification. | Is this letter C? |
|
27 |
+
| ... | Binary classification. | ... |
|
letter.data
ADDED
The diff for this file is too large to render.
See raw diff
|
|
letter.py
ADDED
@@ -0,0 +1,205 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Letter Dataset"""
|
2 |
+
|
3 |
+
from typing import List
|
4 |
+
from functools import partial
|
5 |
+
import string
|
6 |
+
|
7 |
+
import datasets
|
8 |
+
|
9 |
+
import pandas
|
10 |
+
|
11 |
+
|
12 |
+
VERSION = datasets.Version("1.0.0")
|
13 |
+
|
14 |
+
_ENCODING_DICS = {
|
15 |
+
"letter": {letter: i for i, letter in zip(string.ascii_uppercase)}
|
16 |
+
}
|
17 |
+
|
18 |
+
DESCRIPTION = "Letter dataset."
|
19 |
+
_HOMEPAGE = "https://archive-beta.ics.uci.edu/dataset/170/letter"
|
20 |
+
_URLS = ("https://archive-beta.ics.uci.edu/dataset/170/letter")
|
21 |
+
_CITATION = """
|
22 |
+
@misc{misc_letter_recognition_59,
|
23 |
+
author = {Slate,David},
|
24 |
+
title = {{Letter Recognition}},
|
25 |
+
year = {1991},
|
26 |
+
howpublished = {UCI Machine Learning Repository},
|
27 |
+
note = {{DOI}: \\url{10.24432/C5ZP40}}
|
28 |
+
}
|
29 |
+
"""
|
30 |
+
|
31 |
+
# Dataset info
|
32 |
+
urls_per_split = {
|
33 |
+
"train": "https://huggingface.co/datasets/mstz/letter/resolve/main/letter.data"
|
34 |
+
}
|
35 |
+
features_types_per_config = {
|
36 |
+
"letter": {
|
37 |
+
"x-box": datasets.Value("int64"),
|
38 |
+
"y-box": datasets.Value("int64"),
|
39 |
+
"width": datasets.Value("int64"),
|
40 |
+
"high": datasets.Value("int64"),
|
41 |
+
"onpix": datasets.Value("int64"),
|
42 |
+
"x-bar": datasets.Value("int64"),
|
43 |
+
"y-bar": datasets.Value("int64"),
|
44 |
+
"x2bar": datasets.Value("int64"),
|
45 |
+
"y2bar": datasets.Value("int64"),
|
46 |
+
"xybar": datasets.Value("int64"),
|
47 |
+
"x2ybr": datasets.Value("int64"),
|
48 |
+
"xy2br": datasets.Value("int64"),
|
49 |
+
"x-ege": datasets.Value("int64"),
|
50 |
+
"xegvy": datasets.Value("int64"),
|
51 |
+
"y-ege": datasets.Value("int64"),
|
52 |
+
"yegvx": datasets.Value("int64"),
|
53 |
+
"letter": datasets.ClassLabel(num_classes=26)
|
54 |
+
}
|
55 |
+
}
|
56 |
+
for i, letter in enumerate(string.ascii_uppercase):
|
57 |
+
features_types_per_config[letter] = {
|
58 |
+
"x-box": datasets.Value("int64"),
|
59 |
+
"y-box": datasets.Value("int64"),
|
60 |
+
"width": datasets.Value("int64"),
|
61 |
+
"high": datasets.Value("int64"),
|
62 |
+
"onpix": datasets.Value("int64"),
|
63 |
+
"x-bar": datasets.Value("int64"),
|
64 |
+
"y-bar": datasets.Value("int64"),
|
65 |
+
"x2bar": datasets.Value("int64"),
|
66 |
+
"y2bar": datasets.Value("int64"),
|
67 |
+
"xybar": datasets.Value("int64"),
|
68 |
+
"x2ybr": datasets.Value("int64"),
|
69 |
+
"xy2br": datasets.Value("int64"),
|
70 |
+
"x-ege": datasets.Value("int64"),
|
71 |
+
"xegvy": datasets.Value("int64"),
|
72 |
+
"y-ege": datasets.Value("int64"),
|
73 |
+
"yegvx": datasets.Value("int64"),
|
74 |
+
"letter": datasets.ClassLabel(num_classes=2)
|
75 |
+
}
|
76 |
+
|
77 |
+
features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config}
|
78 |
+
|
79 |
+
|
80 |
+
class LetterConfig(datasets.BuilderConfig):
|
81 |
+
def __init__(self, **kwargs):
|
82 |
+
super(LetterConfig, self).__init__(version=VERSION, **kwargs)
|
83 |
+
self.features = features_per_config[kwargs["name"]]
|
84 |
+
|
85 |
+
|
86 |
+
class Letter(datasets.GeneratorBasedBuilder):
|
87 |
+
# dataset versions
|
88 |
+
DEFAULT_CONFIG = "letter"
|
89 |
+
BUILDER_CONFIGS = [
|
90 |
+
LetterConfig(name="letter", description="Letter for multiclass classification."),
|
91 |
+
LetterConfig(name="A", description="Letter for binary letter A classification."),
|
92 |
+
LetterConfig(name="B", description="Letter for binary letter B classification."),
|
93 |
+
LetterConfig(name="C", description="Letter for binary letter C classification."),
|
94 |
+
LetterConfig(name="D", description="Letter for binary letter D classification."),
|
95 |
+
LetterConfig(name="E", description="Letter for binary letter E classification."),
|
96 |
+
LetterConfig(name="F", description="Letter for binary letter F classification."),
|
97 |
+
LetterConfig(name="G", description="Letter for binary letter G classification."),
|
98 |
+
LetterConfig(name="H", description="Letter for binary letter H classification."),
|
99 |
+
LetterConfig(name="I", description="Letter for binary letter I classification."),
|
100 |
+
LetterConfig(name="J", description="Letter for binary letter J classification."),
|
101 |
+
LetterConfig(name="K", description="Letter for binary letter K classification."),
|
102 |
+
LetterConfig(name="L", description="Letter for binary letter L classification."),
|
103 |
+
LetterConfig(name="M", description="Letter for binary letter M classification."),
|
104 |
+
LetterConfig(name="N", description="Letter for binary letter N classification."),
|
105 |
+
LetterConfig(name="O", description="Letter for binary letter O classification."),
|
106 |
+
LetterConfig(name="P", description="Letter for binary letter P classification."),
|
107 |
+
LetterConfig(name="Q", description="Letter for binary letter Q classification."),
|
108 |
+
LetterConfig(name="R", description="Letter for binary letter R classification."),
|
109 |
+
LetterConfig(name="S", description="Letter for binary letter S classification."),
|
110 |
+
LetterConfig(name="T", description="Letter for binary letter T classification."),
|
111 |
+
LetterConfig(name="U", description="Letter for binary letter U classification."),
|
112 |
+
LetterConfig(name="V", description="Letter for binary letter V classification."),
|
113 |
+
LetterConfig(name="W", description="Letter for binary letter W classification."),
|
114 |
+
LetterConfig(name="X", description="Letter for binary letter X classification."),
|
115 |
+
LetterConfig(name="Y", description="Letter for binary letter Y classification."),
|
116 |
+
LetterConfig(name="Z", description="Letter for binary letter Z classification."),
|
117 |
+
]
|
118 |
+
|
119 |
+
|
120 |
+
def _info(self):
|
121 |
+
info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE,
|
122 |
+
features=features_per_config[self.config.name])
|
123 |
+
|
124 |
+
return info
|
125 |
+
|
126 |
+
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
127 |
+
downloads = dl_manager.download_and_extract(urls_per_split)
|
128 |
+
|
129 |
+
return [
|
130 |
+
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]}),
|
131 |
+
]
|
132 |
+
|
133 |
+
def _generate_examples(self, filepath: str):
|
134 |
+
data = pandas.read_csv(filepath, header=None)
|
135 |
+
data = self.preprocess(data)
|
136 |
+
|
137 |
+
for row_id, row in data.iterrows():
|
138 |
+
data_row = dict(row)
|
139 |
+
|
140 |
+
yield row_id, data_row
|
141 |
+
|
142 |
+
def preprocess(self, data: pandas.DataFrame) -> pandas.DataFrame:
|
143 |
+
for feature in _ENCODING_DICS:
|
144 |
+
encoding_function = partial(self.encode, feature)
|
145 |
+
data.loc[:, feature] = data[feature].apply(encoding_function)
|
146 |
+
|
147 |
+
if self.config.name == "A":
|
148 |
+
data.letter = data.letter.apply(lambda x: 1 if x == 0 else 0)
|
149 |
+
elif self.config.name == "B":
|
150 |
+
data.letter = data.letter.apply(lambda x: 1 if x == 1 else 0)
|
151 |
+
elif self.config.name == "C":
|
152 |
+
data.letter = data.letter.apply(lambda x: 1 if x == 2 else 0)
|
153 |
+
elif self.config.name == "D":
|
154 |
+
data.letter = data.letter.apply(lambda x: 1 if x == 3 else 0)
|
155 |
+
elif self.config.name == "E":
|
156 |
+
data.letter = data.letter.apply(lambda x: 1 if x == 4 else 0)
|
157 |
+
elif self.config.name == "F":
|
158 |
+
data.letter = data.letter.apply(lambda x: 1 if x == 5 else 0)
|
159 |
+
elif self.config.name == "G":
|
160 |
+
data.letter = data.letter.apply(lambda x: 1 if x == 6 else 0)
|
161 |
+
elif self.config.name == "H":
|
162 |
+
data.letter = data.letter.apply(lambda x: 1 if x == 7 else 0)
|
163 |
+
elif self.config.name == "I":
|
164 |
+
data.letter = data.letter.apply(lambda x: 1 if x == 8 else 0)
|
165 |
+
elif self.config.name == "J":
|
166 |
+
data.letter = data.letter.apply(lambda x: 1 if x == 9 else 0)
|
167 |
+
elif self.config.name == "K":
|
168 |
+
data.letter = data.letter.apply(lambda x: 1 if x == 10 else 0)
|
169 |
+
elif self.config.name == "L":
|
170 |
+
data.letter = data.letter.apply(lambda x: 1 if x == 11 else 0)
|
171 |
+
elif self.config.name == "M":
|
172 |
+
data.letter = data.letter.apply(lambda x: 1 if x == 12 else 0)
|
173 |
+
elif self.config.name == "N":
|
174 |
+
data.letter = data.letter.apply(lambda x: 1 if x == 13 else 0)
|
175 |
+
elif self.config.name == "O":
|
176 |
+
data.letter = data.letter.apply(lambda x: 1 if x == 14 else 0)
|
177 |
+
elif self.config.name == "P":
|
178 |
+
data.letter = data.letter.apply(lambda x: 1 if x == 15 else 0)
|
179 |
+
elif self.config.name == "Q":
|
180 |
+
data.letter = data.letter.apply(lambda x: 1 if x == 16 else 0)
|
181 |
+
elif self.config.name == "R":
|
182 |
+
data.letter = data.letter.apply(lambda x: 1 if x == 17 else 0)
|
183 |
+
elif self.config.name == "S":
|
184 |
+
data.letter = data.letter.apply(lambda x: 1 if x == 18 else 0)
|
185 |
+
elif self.config.name == "T":
|
186 |
+
data.letter = data.letter.apply(lambda x: 1 if x == 19 else 0)
|
187 |
+
elif self.config.name == "U":
|
188 |
+
data.letter = data.letter.apply(lambda x: 1 if x == 20 else 0)
|
189 |
+
elif self.config.name == "V":
|
190 |
+
data.letter = data.letter.apply(lambda x: 1 if x == 21 else 0)
|
191 |
+
elif self.config.name == "W":
|
192 |
+
data.letter = data.letter.apply(lambda x: 1 if x == 22 else 0)
|
193 |
+
elif self.config.name == "X":
|
194 |
+
data.letter = data.letter.apply(lambda x: 1 if x == 23 else 0)
|
195 |
+
elif self.config.name == "Y":
|
196 |
+
data.letter = data.letter.apply(lambda x: 1 if x == 24 else 0)
|
197 |
+
elif self.config.name == "Z":
|
198 |
+
data.letter = data.letter.apply(lambda x: 1 if x == 25 else 0)
|
199 |
+
|
200 |
+
return data[list(features_types_per_config[self.config.name].keys())]
|
201 |
+
|
202 |
+
def encode(self, feature, value):
|
203 |
+
if feature in _ENCODING_DICS:
|
204 |
+
return _ENCODING_DICS[feature][value]
|
205 |
+
raise ValueError(f"Unknown feature: {feature}")
|