mstz commited on
Commit
09a2ba1
1 Parent(s): e3db4c4

Upload 3 files

Browse files
Files changed (3) hide show
  1. Indian Liver Patient Dataset (ILPD).csv +584 -0
  2. README.md +29 -1
  3. liver.py +81 -0
Indian Liver Patient Dataset (ILPD).csv ADDED
@@ -0,0 +1,584 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ age,is_male,total_bilirubin,direct_ribilubin,alkaline_phosphotase,alamine_aminotransferasi,aspartate_aminotransferase,total_proteins,albumin,albumin_to_globulin_ratio,class
2
+ 65,0,0.7,0.1,187,16,18,6.8,3.3,0.9,1
3
+ 62,1,10.9,5.5,699,64,100,7.5,3.2,0.74,1
4
+ 62,1,7.3,4.1,490,60,68,7,3.3,0.89,1
5
+ 58,1,1,0.4,182,14,20,6.8,3.4,1,1
6
+ 72,1,3.9,2,195,27,59,7.3,2.4,0.4,1
7
+ 46,1,1.8,0.7,208,19,14,7.6,4.4,1.3,1
8
+ 26,0,0.9,0.2,154,16,12,7,3.5,1,1
9
+ 29,0,0.9,0.3,202,14,11,6.7,3.6,1.1,1
10
+ 17,1,0.9,0.3,202,22,19,7.4,4.1,1.2,2
11
+ 55,1,0.7,0.2,290,53,58,6.8,3.4,1,1
12
+ 57,1,0.6,0.1,210,51,59,5.9,2.7,0.8,1
13
+ 72,1,2.7,1.3,260,31,56,7.4,3,0.6,1
14
+ 64,1,0.9,0.3,310,61,58,7,3.4,0.9,2
15
+ 74,0,1.1,0.4,214,22,30,8.1,4.1,1,1
16
+ 61,1,0.7,0.2,145,53,41,5.8,2.7,0.87,1
17
+ 25,1,0.6,0.1,183,91,53,5.5,2.3,0.7,2
18
+ 38,1,1.8,0.8,342,168,441,7.6,4.4,1.3,1
19
+ 33,1,1.6,0.5,165,15,23,7.3,3.5,0.92,2
20
+ 40,0,0.9,0.3,293,232,245,6.8,3.1,0.8,1
21
+ 40,0,0.9,0.3,293,232,245,6.8,3.1,0.8,1
22
+ 51,1,2.2,1,610,17,28,7.3,2.6,0.55,1
23
+ 51,1,2.9,1.3,482,22,34,7,2.4,0.5,1
24
+ 62,1,6.8,3,542,116,66,6.4,3.1,0.9,1
25
+ 40,1,1.9,1,231,16,55,4.3,1.6,0.6,1
26
+ 63,1,0.9,0.2,194,52,45,6,3.9,1.85,2
27
+ 34,1,4.1,2,289,875,731,5,2.7,1.1,1
28
+ 34,1,4.1,2,289,875,731,5,2.7,1.1,1
29
+ 34,1,6.2,3,240,1680,850,7.2,4,1.2,1
30
+ 20,1,1.1,0.5,128,20,30,3.9,1.9,0.95,2
31
+ 84,0,0.7,0.2,188,13,21,6,3.2,1.1,2
32
+ 57,1,4,1.9,190,45,111,5.2,1.5,0.4,1
33
+ 52,1,0.9,0.2,156,35,44,4.9,2.9,1.4,1
34
+ 57,1,1,0.3,187,19,23,5.2,2.9,1.2,2
35
+ 38,0,2.6,1.2,410,59,57,5.6,3,0.8,2
36
+ 38,0,2.6,1.2,410,59,57,5.6,3,0.8,2
37
+ 30,1,1.3,0.4,482,102,80,6.9,3.3,0.9,1
38
+ 17,0,0.7,0.2,145,18,36,7.2,3.9,1.18,2
39
+ 46,0,14.2,7.8,374,38,77,4.3,2,0.8,1
40
+ 48,1,1.4,0.6,263,38,66,5.8,2.2,0.61,1
41
+ 47,1,2.7,1.3,275,123,73,6.2,3.3,1.1,1
42
+ 45,1,2.4,1.1,168,33,50,5.1,2.6,1,1
43
+ 62,1,0.6,0.1,160,42,110,4.9,2.6,1.1,2
44
+ 42,1,6.8,3.2,630,25,47,6.1,2.3,0.6,2
45
+ 50,1,2.6,1.2,415,407,576,6.4,3.2,1,1
46
+ 85,0,1,0.3,208,17,15,7,3.6,1,2
47
+ 35,1,1.8,0.6,275,48,178,6.5,3.2,0.9,2
48
+ 21,1,3.9,1.8,150,36,27,6.8,3.9,1.34,1
49
+ 40,1,1.1,0.3,230,1630,960,4.9,2.8,1.3,1
50
+ 32,0,0.6,0.1,176,39,28,6,3,1,1
51
+ 55,1,18.4,8.8,206,64,178,6.2,1.8,0.4,1
52
+ 45,0,0.7,0.2,170,21,14,5.7,2.5,0.7,1
53
+ 34,0,0.6,0.1,161,15,19,6.6,3.4,1,1
54
+ 38,1,3.1,1.6,253,80,406,6.8,3.9,1.3,1
55
+ 38,1,1.1,0.3,198,86,150,6.3,3.5,1.2,1
56
+ 42,1,8.9,4.5,272,31,61,5.8,2,0.5,1
57
+ 42,1,8.9,4.5,272,31,61,5.8,2,0.5,1
58
+ 33,1,0.8,0.2,198,26,23,8,4,1,2
59
+ 48,0,0.9,0.2,175,24,54,5.5,2.7,0.9,2
60
+ 51,1,0.8,0.2,367,42,18,5.2,2,0.6,1
61
+ 64,1,1.1,0.5,145,20,24,5.5,3.2,1.39,2
62
+ 31,0,0.8,0.2,158,21,16,6,3,1,1
63
+ 58,1,1,0.5,158,37,43,7.2,3.6,1,1
64
+ 58,1,1,0.5,158,37,43,7.2,3.6,1,1
65
+ 57,1,0.7,0.2,208,35,97,5.1,2.1,0.7,1
66
+ 57,1,1.3,0.4,259,40,86,6.5,2.5,0.6,1
67
+ 57,1,1.4,0.7,470,62,88,5.6,2.5,0.8,1
68
+ 54,1,2.2,1.2,195,55,95,6,3.7,1.6,1
69
+ 37,1,1.8,0.8,215,53,58,6.4,3.8,1.4,1
70
+ 66,1,0.7,0.2,239,27,26,6.3,3.7,1.4,1
71
+ 60,1,0.8,0.2,215,24,17,6.3,3,0.9,2
72
+ 19,0,0.7,0.2,186,166,397,5.5,3,1.2,1
73
+ 75,0,0.8,0.2,188,20,29,4.4,1.8,0.6,1
74
+ 75,0,0.8,0.2,205,27,24,4.4,2,0.8,1
75
+ 52,1,0.6,0.1,171,22,16,6.6,3.6,1.2,1
76
+ 68,1,0.7,0.1,145,20,22,5.8,2.9,1,1
77
+ 29,0,0.7,0.1,162,52,41,5.2,2.5,0.9,2
78
+ 31,1,0.9,0.2,518,189,17,5.3,2.3,0.7,1
79
+ 68,0,0.6,0.1,1620,95,127,4.6,2.1,0.8,1
80
+ 70,1,1.4,0.6,146,12,24,6.2,3.8,1.58,2
81
+ 58,0,2.8,1.3,670,48,79,4.7,1.6,0.5,1
82
+ 58,0,2.4,1.1,915,60,142,4.7,1.8,0.6,1
83
+ 29,1,1,0.3,75,25,26,5.1,2.9,1.3,1
84
+ 49,1,0.7,0.1,148,14,12,5.4,2.8,1,2
85
+ 33,1,2,1,258,194,152,5.4,3,1.25,1
86
+ 32,1,0.6,0.1,237,45,31,7.5,4.3,1.34,1
87
+ 14,1,1.4,0.5,269,58,45,6.7,3.9,1.4,1
88
+ 13,1,0.6,0.1,320,28,56,7.2,3.6,1,2
89
+ 58,1,0.8,0.2,298,33,59,6.2,3.1,1,1
90
+ 18,1,0.6,0.2,538,33,34,7.5,3.2,0.7,1
91
+ 60,1,4,1.9,238,119,350,7.1,3.3,0.8,1
92
+ 60,1,5.7,2.8,214,412,850,7.3,3.2,0.78,1
93
+ 60,1,6.8,3.2,308,404,794,6.8,3,0.7,1
94
+ 60,1,8.6,4,298,412,850,7.4,3,0.6,1
95
+ 60,1,5.8,2.7,204,220,400,7,3,0.7,1
96
+ 60,1,5.2,2.4,168,126,202,6.8,2.9,0.7,1
97
+ 75,1,0.9,0.2,282,25,23,4.4,2.2,1,1
98
+ 39,1,3.8,1.5,298,102,630,7.1,3.3,0.8,1
99
+ 39,1,6.6,3,215,190,950,4,1.7,0.7,1
100
+ 18,1,0.6,0.1,265,97,161,5.9,3.1,1.1,1
101
+ 18,1,0.7,0.1,312,308,405,6.9,3.7,1.1,1
102
+ 27,1,0.6,0.2,161,27,28,3.7,1.6,0.76,2
103
+ 27,1,0.7,0.2,243,21,23,5.3,2.3,0.7,2
104
+ 17,1,0.9,0.2,224,36,45,6.9,4.2,1.55,1
105
+ 55,0,0.8,0.2,225,14,23,6.1,3.3,1.2,2
106
+ 63,1,0.5,0.1,170,21,28,5.5,2.5,0.8,1
107
+ 36,1,5.3,2.3,145,32,92,5.1,2.6,1,2
108
+ 36,1,5.3,2.3,145,32,92,5.1,2.6,1,2
109
+ 36,1,0.8,0.2,158,29,39,6,2.2,0.5,2
110
+ 36,1,0.8,0.2,158,29,39,6,2.2,0.5,2
111
+ 36,1,0.9,0.1,486,25,34,5.9,2.8,0.9,2
112
+ 24,0,0.7,0.2,188,11,10,5.5,2.3,0.71,2
113
+ 48,1,3.2,1.6,257,33,116,5.7,2.2,0.62,1
114
+ 27,1,1.2,0.4,179,63,39,6.1,3.3,1.1,2
115
+ 74,1,0.6,0.1,272,24,98,5,2,0.6,1
116
+ 50,1,5.8,3,661,181,285,5.7,2.3,0.67,2
117
+ 50,1,7.3,3.6,1580,88,64,5.6,2.3,0.6,2
118
+ 48,1,0.7,0.1,1630,74,149,5.3,2,0.6,1
119
+ 32,1,12.7,6.2,194,2000,2946,5.7,3.3,1.3,1
120
+ 32,1,15.9,7,280,1350,1600,5.6,2.8,1,1
121
+ 32,1,18,8.2,298,1250,1050,5.4,2.6,0.9,1
122
+ 32,1,23,11.3,300,482,275,7.1,3.5,0.9,1
123
+ 32,1,22.7,10.2,290,322,113,6.6,2.8,0.7,1
124
+ 58,1,1.7,0.8,188,60,84,5.9,3.5,1.4,2
125
+ 64,0,0.8,0.2,178,17,18,6.3,3.1,0.9,1
126
+ 28,1,0.6,0.1,177,36,29,6.9,4.1,1.4,2
127
+ 60,1,1.8,0.5,201,45,25,3.9,1.7,0.7,2
128
+ 48,1,5.8,2.5,802,133,88,6,2.8,0.8,1
129
+ 64,1,3,1.4,248,46,40,6.5,3.2,0.9,1
130
+ 58,0,1.7,0.8,1896,61,83,8,3.9,0.95,1
131
+ 45,1,2.8,1.7,263,57,65,5.1,2.3,0.8,1
132
+ 45,1,3.2,1.4,512,50,58,6,2.7,0.8,1
133
+ 70,0,0.7,0.2,237,18,28,5.8,2.5,0.75,2
134
+ 18,0,0.8,0.2,199,34,31,6.5,3.5,1.16,2
135
+ 53,1,0.9,0.4,238,17,14,6.6,2.9,0.8,1
136
+ 18,1,1.8,0.7,178,35,36,6.8,3.6,1.1,1
137
+ 66,1,11.3,5.6,1110,1250,4929,7,2.4,0.5,1
138
+ 46,0,4.7,2.2,310,62,90,6.4,2.5,0.6,1
139
+ 18,1,0.8,0.2,282,72,140,5.5,2.5,0.8,1
140
+ 18,1,0.8,0.2,282,72,140,5.5,2.5,0.8,1
141
+ 15,1,0.8,0.2,380,25,66,6.1,3.7,1.5,1
142
+ 60,1,0.6,0.1,186,20,21,6.2,3.3,1.1,2
143
+ 66,0,4.2,2.1,159,15,30,7.1,2.2,0.4,1
144
+ 30,1,1.6,0.4,332,84,139,5.6,2.7,0.9,1
145
+ 30,1,1.6,0.4,332,84,139,5.6,2.7,0.9,1
146
+ 45,0,3.5,1.5,189,63,87,5.6,2.9,1,1
147
+ 65,1,0.8,0.2,201,18,22,5.4,2.9,1.1,2
148
+ 66,0,2.9,1.3,168,21,38,5.5,1.8,0.4,1
149
+ 65,1,0.7,0.1,392,20,30,5.3,2.8,1.1,1
150
+ 50,1,0.9,0.2,202,20,26,7.2,4.5,1.66,1
151
+ 60,1,0.8,0.2,286,21,27,7.1,4,1.2,1
152
+ 56,1,1.1,0.5,180,30,42,6.9,3.8,1.2,2
153
+ 50,1,1.6,0.8,218,18,20,5.9,2.9,0.96,1
154
+ 46,0,0.8,0.2,182,20,40,6,2.9,0.9,1
155
+ 52,1,0.6,0.1,178,26,27,6.5,3.6,1.2,2
156
+ 34,1,5.9,2.5,290,45,233,5.6,2.7,0.9,1
157
+ 34,1,8.7,4,298,58,138,5.8,2.4,0.7,1
158
+ 32,1,0.9,0.3,462,70,82,6.2,3.1,1,1
159
+ 72,1,0.7,0.1,196,20,35,5.8,2,0.5,1
160
+ 72,1,0.7,0.1,196,20,35,5.8,2,0.5,1
161
+ 50,1,1.2,0.4,282,36,32,7.2,3.9,1.1,1
162
+ 60,1,11,4.9,750,140,350,5.5,2.1,0.6,1
163
+ 60,1,11.5,5,1050,99,187,6.2,2.8,0.8,1
164
+ 60,1,5.8,2.7,599,43,66,5.4,1.8,0.5,1
165
+ 39,1,1.9,0.9,180,42,62,7.4,4.3,1.38,1
166
+ 39,1,1.9,0.9,180,42,62,7.4,4.3,1.38,1
167
+ 48,1,4.5,2.3,282,13,74,7,2.4,0.52,1
168
+ 55,1,75,3.6,332,40,66,6.2,2.5,0.6,1
169
+ 47,0,3,1.5,292,64,67,5.6,1.8,0.47,1
170
+ 60,1,22.8,12.6,962,53,41,6.9,3.3,0.9,1
171
+ 60,1,8.9,4,950,33,32,6.8,3.1,0.8,1
172
+ 72,1,1.7,0.8,200,28,37,6.2,3,0.93,1
173
+ 44,0,1.9,0.6,298,378,602,6.6,3.3,1,1
174
+ 55,1,14.1,7.6,750,35,63,5,1.6,0.47,1
175
+ 31,1,0.6,0.1,175,48,34,6,3.7,1.6,1
176
+ 31,1,0.6,0.1,175,48,34,6,3.7,1.6,1
177
+ 31,1,0.8,0.2,198,43,31,7.3,4,1.2,1
178
+ 55,1,0.8,0.2,482,112,99,5.7,2.6,0.8,1
179
+ 75,1,14.8,9,1020,71,42,5.3,2.2,0.7,1
180
+ 75,1,10.6,5,562,37,29,5.1,1.8,0.5,1
181
+ 75,1,8,4.6,386,30,25,5.5,1.8,0.48,1
182
+ 75,1,2.8,1.3,250,23,29,2.7,0.9,0.5,1
183
+ 75,1,2.9,1.3,218,33,37,3,1.5,1,1
184
+ 65,1,1.9,0.8,170,36,43,3.8,1.4,0.58,2
185
+ 40,1,0.6,0.1,171,20,17,5.4,2.5,0.8,1
186
+ 64,1,1.1,0.4,201,18,19,6.9,4.1,1.4,1
187
+ 38,1,1.5,0.4,298,60,103,6,3,1,2
188
+ 60,1,3.2,1.8,750,79,145,7.8,3.2,0.69,1
189
+ 60,1,2.1,1,191,114,247,4,1.6,0.6,1
190
+ 60,1,1.9,0.8,614,42,38,4.5,1.8,0.6,1
191
+ 48,0,0.8,0.2,218,32,28,5.2,2.5,0.9,2
192
+ 60,1,6.3,3.2,314,118,114,6.6,3.7,1.27,1
193
+ 60,1,5.8,3,257,107,104,6.6,3.5,1.12,1
194
+ 60,1,2.3,0.6,272,79,51,6.6,3.5,1.1,1
195
+ 49,1,1.3,0.4,206,30,25,6,3.1,1.06,2
196
+ 49,1,2,0.6,209,48,32,5.7,3,1.1,2
197
+ 60,1,2.4,1,1124,30,54,5.2,1.9,0.5,1
198
+ 60,1,2,1.1,664,52,104,6,2.1,0.53,1
199
+ 26,0,0.6,0.2,142,12,32,5.7,2.4,0.75,1
200
+ 41,1,0.9,0.2,169,22,18,6.1,3,0.9,2
201
+ 7,0,27.2,11.8,1420,790,1050,6.1,2,0.4,1
202
+ 49,1,0.6,0.1,218,50,53,5,2.4,0.9,1
203
+ 49,1,0.6,0.1,218,50,53,5,2.4,0.9,1
204
+ 38,0,0.8,0.2,145,19,23,6.1,3.1,1.03,2
205
+ 21,1,1,0.3,142,27,21,6.4,3.5,1.2,2
206
+ 21,1,0.7,0.2,135,27,26,6.4,3.3,1,2
207
+ 45,1,2.5,1.2,163,28,22,7.6,4,1.1,1
208
+ 40,1,3.6,1.8,285,50,60,7,2.9,0.7,1
209
+ 40,1,3.9,1.7,350,950,1500,6.7,3.8,1.3,1
210
+ 70,0,0.9,0.3,220,53,95,6.1,2.8,0.68,1
211
+ 45,0,0.9,0.3,189,23,33,6.6,3.9,,1
212
+ 28,1,0.8,0.3,190,20,14,4.1,2.4,1.4,1
213
+ 42,1,2.7,1.3,219,60,180,7,3.2,0.8,1
214
+ 22,1,2.7,1,160,82,127,5.5,3.1,1.2,2
215
+ 8,0,0.9,0.2,401,25,58,7.5,3.4,0.8,1
216
+ 38,1,1.7,1,180,18,34,7.2,3.6,1,1
217
+ 66,1,0.6,0.2,100,17,148,5,3.3,1.9,2
218
+ 55,1,0.9,0.2,116,36,16,6.2,3.2,1,2
219
+ 49,1,1.1,0.5,159,30,31,7,4.3,1.5,1
220
+ 6,1,0.6,0.1,289,38,30,4.8,2,0.7,2
221
+ 37,1,0.8,0.2,125,41,39,6.4,3.4,1.1,1
222
+ 37,1,0.8,0.2,147,27,46,5,2.5,1,1
223
+ 47,1,0.9,0.2,192,38,24,7.3,4.3,1.4,1
224
+ 47,1,0.9,0.2,265,40,28,8,4,1,1
225
+ 50,1,1.1,0.3,175,20,19,7.1,4.5,1.7,2
226
+ 70,1,1.7,0.5,400,56,44,5.7,3.1,1.1,1
227
+ 26,1,0.6,0.2,120,45,51,7.9,4,1,1
228
+ 26,1,1.3,0.4,173,38,62,8,4,1,1
229
+ 68,0,0.7,0.2,186,18,15,6.4,3.8,1.4,1
230
+ 65,0,1,0.3,202,26,13,5.3,2.6,0.9,2
231
+ 46,1,0.6,0.2,290,26,21,6,3,1,1
232
+ 61,1,1.5,0.6,196,61,85,6.7,3.8,1.3,2
233
+ 61,1,0.8,0.1,282,85,231,8.5,4.3,1,1
234
+ 50,1,2.7,1.6,157,149,156,7.9,3.1,0.6,1
235
+ 33,1,2,1.4,2110,48,89,6.2,3,0.9,1
236
+ 40,0,0.9,0.2,285,32,27,7.7,3.5,0.8,1
237
+ 60,1,1.5,0.6,360,230,298,4.5,2,0.8,1
238
+ 22,1,0.8,0.2,300,57,40,7.9,3.8,0.9,2
239
+ 35,0,0.9,0.3,158,20,16,8,4,1,1
240
+ 35,0,0.9,0.2,190,40,35,7.3,4.7,1.8,2
241
+ 40,1,0.9,0.3,196,69,48,6.8,3.1,0.8,1
242
+ 48,1,0.7,0.2,165,32,30,8,4,1,2
243
+ 51,1,0.8,0.2,230,24,46,6.5,3.1,,1
244
+ 29,0,0.8,0.2,205,30,23,8.2,4.1,1,1
245
+ 28,0,0.9,0.2,316,25,23,8.5,5.5,1.8,1
246
+ 54,1,0.8,0.2,218,20,19,6.3,2.5,0.6,1
247
+ 54,1,0.9,0.2,290,15,18,6.1,2.8,0.8,1
248
+ 55,1,1.8,9,272,22,79,6.1,2.7,0.7,1
249
+ 55,1,0.9,0.2,190,25,28,5.9,2.7,0.8,1
250
+ 40,1,0.7,0.1,202,37,29,5,2.6,1,1
251
+ 33,1,1.2,0.3,498,28,25,7,3,0.7,1
252
+ 33,1,2.1,1.3,480,38,22,6.5,3,0.8,1
253
+ 33,1,0.9,0.8,680,37,40,5.9,2.6,0.8,1
254
+ 65,1,1.1,0.3,258,48,40,7,3.9,1.2,2
255
+ 35,0,0.6,0.2,180,12,15,5.2,2.7,,2
256
+ 38,0,0.7,0.1,152,90,21,7.1,4.2,1.4,2
257
+ 38,1,1.7,0.7,859,89,48,6,3,1,1
258
+ 50,1,0.9,0.3,901,23,17,6.2,3.5,1.2,1
259
+ 44,1,0.8,0.2,335,148,86,5.6,3,1.1,1
260
+ 36,1,0.8,0.2,182,31,34,6.4,3.8,1.4,2
261
+ 42,1,30.5,14.2,285,65,130,5.2,2.1,0.6,1
262
+ 42,1,16.4,8.9,245,56,87,5.4,2,0.5,1
263
+ 33,1,1.5,7,505,205,140,7.5,3.9,1,1
264
+ 18,1,0.8,0.2,228,55,54,6.9,4,1.3,1
265
+ 38,0,0.8,0.2,185,25,21,7,3,0.7,1
266
+ 38,1,0.8,0.2,247,55,92,7.4,4.3,1.38,2
267
+ 4,1,0.9,0.2,348,30,34,8,4,1,2
268
+ 62,1,1.2,0.4,195,38,54,6.3,3.8,1.5,1
269
+ 43,0,0.9,0.3,140,12,29,7.4,3.5,1.8,1
270
+ 40,1,14.5,6.4,358,50,75,5.7,2.1,0.5,1
271
+ 26,1,0.6,0.1,110,15,20,2.8,1.6,1.3,1
272
+ 37,1,0.7,0.2,235,96,54,9.5,4.9,1,1
273
+ 4,1,0.8,0.2,460,152,231,6.5,3.2,0.9,2
274
+ 21,1,18.5,9.5,380,390,500,8.2,4.1,1,1
275
+ 30,1,0.7,0.2,262,15,18,9.6,4.7,1.2,1
276
+ 33,1,1.8,0.8,196,25,22,8,4,1,1
277
+ 26,1,1.9,0.8,180,22,19,8.2,4.1,1,2
278
+ 35,1,0.9,0.2,190,25,20,6.4,3.6,1.2,2
279
+ 60,1,2,0.8,190,45,40,6,2.8,0.8,1
280
+ 45,1,2.2,0.8,209,25,20,8,4,1,1
281
+ 48,0,1,1.4,144,18,14,8.3,4.2,1,1
282
+ 58,1,0.8,0.2,123,56,48,6,3,1,1
283
+ 50,1,0.7,0.2,192,18,15,7.4,4.2,1.3,2
284
+ 50,1,0.7,0.2,188,12,14,7,3.4,0.9,1
285
+ 18,1,1.3,0.7,316,10,21,6,2.1,0.5,2
286
+ 18,1,0.9,0.3,300,30,48,8,4,1,1
287
+ 13,1,1.5,0.5,575,29,24,7.9,3.9,0.9,1
288
+ 34,0,0.8,0.2,192,15,12,8.6,4.7,1.2,1
289
+ 43,1,1.3,0.6,155,15,20,8,4,1,2
290
+ 50,0,1,0.5,239,16,39,7.5,3.7,0.9,1
291
+ 57,1,4.5,2.3,315,120,105,7,4,1.3,1
292
+ 45,0,1,0.3,250,48,44,8.6,4.3,1,1
293
+ 60,1,0.7,0.2,174,32,14,7.8,4.2,1.1,2
294
+ 45,1,0.6,0.2,245,22,24,7.1,3.4,0.9,1
295
+ 23,1,1.1,0.5,191,37,41,7.7,4.3,1.2,2
296
+ 22,1,2.4,1,340,25,21,8.3,4.5,1.1,1
297
+ 22,1,0.6,0.2,202,78,41,8,3.9,0.9,1
298
+ 74,0,0.9,0.3,234,16,19,7.9,4,1,1
299
+ 25,0,0.9,0.3,159,24,25,6.9,4.4,1.7,2
300
+ 31,0,1.1,0.3,190,26,15,7.9,3.8,0.9,1
301
+ 24,0,0.9,0.2,195,40,35,7.4,4.1,1.2,2
302
+ 58,1,0.8,0.2,180,32,25,8.2,4.4,1.1,2
303
+ 51,0,0.9,0.2,280,21,30,6.7,3.2,0.8,1
304
+ 50,0,1.7,0.6,430,28,32,6.8,3.5,1,1
305
+ 50,1,0.7,0.2,206,18,17,8.4,4.2,1,2
306
+ 55,0,0.8,0.2,155,21,17,6.9,3.8,1.4,1
307
+ 54,0,1.4,0.7,195,36,16,7.9,3.7,0.9,2
308
+ 48,1,1.6,1,588,74,113,7.3,2.4,0.4,1
309
+ 30,1,0.8,0.2,174,21,47,4.6,2.3,1,1
310
+ 45,0,0.8,0.2,165,22,18,8.2,4.1,1,1
311
+ 48,0,1.1,0.7,527,178,250,8,4.2,1.1,1
312
+ 51,1,0.8,0.2,175,48,22,8.1,4.6,1.3,1
313
+ 54,0,23.2,12.6,574,43,47,7.2,3.5,0.9,1
314
+ 27,1,1.3,0.6,106,25,54,8.5,4.8,,2
315
+ 30,0,0.8,0.2,158,25,22,7.9,4.5,1.3,2
316
+ 26,1,2,0.9,195,24,65,7.8,4.3,1.2,1
317
+ 22,1,0.9,0.3,179,18,21,6.7,3.7,1.2,2
318
+ 44,1,0.9,0.2,182,29,82,7.1,3.7,1,2
319
+ 35,1,0.7,0.2,198,42,30,6.8,3.4,1,1
320
+ 38,1,3.7,2.2,216,179,232,7.8,4.5,1.3,1
321
+ 14,1,0.9,0.3,310,21,16,8.1,4.2,1,2
322
+ 30,0,0.7,0.2,63,31,27,5.8,3.4,1.4,1
323
+ 30,0,0.8,0.2,198,30,58,5.2,2.8,1.1,1
324
+ 36,1,1.7,0.5,205,36,34,7.1,3.9,1.2,1
325
+ 12,1,0.8,0.2,302,47,67,6.7,3.5,1.1,2
326
+ 60,1,2.6,1.2,171,42,37,5.4,2.7,1,1
327
+ 42,1,0.8,0.2,158,27,23,6.7,3.1,0.8,2
328
+ 36,0,1.2,0.4,358,160,90,8.3,4.4,1.1,2
329
+ 24,1,3.3,1.6,174,11,33,7.6,3.9,1,2
330
+ 43,1,0.8,0.2,192,29,20,6,2.9,0.9,2
331
+ 21,1,0.7,0.2,211,14,23,7.3,4.1,1.2,2
332
+ 26,1,2,0.9,157,54,68,6.1,2.7,0.8,1
333
+ 26,1,1.7,0.6,210,62,56,5.4,2.2,0.6,1
334
+ 26,1,7.1,3.3,258,80,113,6.2,2.9,0.8,1
335
+ 36,0,0.7,0.2,152,21,25,5.9,3.1,1.1,2
336
+ 13,0,0.7,0.2,350,17,24,7.4,4,1.1,1
337
+ 13,0,0.7,0.1,182,24,19,8.9,4.9,1.2,1
338
+ 75,1,6.7,3.6,458,198,143,6.2,3.2,1,1
339
+ 75,1,2.5,1.2,375,85,68,6.4,2.9,0.8,1
340
+ 75,1,1.8,0.8,405,79,50,6.1,2.9,0.9,1
341
+ 75,1,1.4,0.4,215,50,30,5.9,2.6,0.7,1
342
+ 75,1,0.9,0.2,206,44,33,6.2,2.9,0.8,1
343
+ 36,0,0.8,0.2,650,70,138,6.6,3.1,0.8,1
344
+ 35,1,0.8,0.2,198,36,32,7,4,1.3,2
345
+ 70,1,3.1,1.6,198,40,28,5.6,2,0.5,1
346
+ 37,1,0.8,0.2,195,60,40,8.2,5,1.5,2
347
+ 60,1,2.9,1.3,230,32,44,5.6,2,0.5,1
348
+ 46,1,0.6,0.2,115,14,11,6.9,3.4,0.9,1
349
+ 38,1,0.7,0.2,216,349,105,7,3.5,1,1
350
+ 70,1,1.3,0.4,358,19,14,6.1,2.8,0.8,1
351
+ 49,0,0.8,0.2,158,19,15,6.6,3.6,1.2,2
352
+ 37,1,1.8,0.8,145,62,58,5.7,2.9,1,1
353
+ 37,1,1.3,0.4,195,41,38,5.3,2.1,0.6,1
354
+ 26,0,0.7,0.2,144,36,33,8.2,4.3,1.1,1
355
+ 48,0,1.4,0.8,621,110,176,7.2,3.9,1.1,1
356
+ 48,0,0.8,0.2,150,25,23,7.5,3.9,1,1
357
+ 19,1,1.4,0.8,178,13,26,8,4.6,1.3,2
358
+ 33,1,0.7,0.2,256,21,30,8.5,3.9,0.8,1
359
+ 33,1,2.1,0.7,205,50,38,6.8,3,0.7,1
360
+ 37,1,0.7,0.2,176,28,34,5.6,2.6,0.8,1
361
+ 69,0,0.8,0.2,146,42,70,8.4,4.9,1.4,2
362
+ 24,1,0.7,0.2,218,47,26,6.6,3.3,1,1
363
+ 65,0,0.7,0.2,182,23,28,6.8,2.9,0.7,2
364
+ 55,1,1.1,0.3,215,21,15,6.2,2.9,0.8,2
365
+ 42,0,0.9,0.2,165,26,29,8.5,4.4,1,2
366
+ 21,1,0.8,0.2,183,33,57,6.8,3.5,1,2
367
+ 40,1,0.7,0.2,176,28,43,5.3,2.4,0.8,2
368
+ 16,1,0.7,0.2,418,28,35,7.2,4.1,1.3,2
369
+ 60,1,2.2,1,271,45,52,6.1,2.9,0.9,2
370
+ 42,0,0.8,0.2,182,22,20,7.2,3.9,1.1,1
371
+ 58,0,0.8,0.2,130,24,25,7,4,1.3,1
372
+ 54,0,22.6,11.4,558,30,37,7.8,3.4,0.8,1
373
+ 33,1,0.8,0.2,135,30,29,7.2,4.4,1.5,2
374
+ 48,1,0.7,0.2,326,29,17,8.7,5.5,1.7,1
375
+ 25,0,0.7,0.1,140,32,25,7.6,4.3,1.3,2
376
+ 56,0,0.7,0.1,145,26,23,7,4,1.3,2
377
+ 47,1,3.5,1.6,206,32,31,6.8,3.4,1,1
378
+ 33,1,0.7,0.1,168,35,33,7,3.7,1.1,1
379
+ 20,0,0.6,0.2,202,12,13,6.1,3,0.9,2
380
+ 50,0,0.7,0.1,192,20,41,7.3,3.3,0.8,1
381
+ 72,1,0.7,0.2,185,16,22,7.3,3.7,1,2
382
+ 50,1,1.7,0.8,331,36,53,7.3,3.4,0.9,1
383
+ 39,1,0.6,0.2,188,28,43,8.1,3.3,0.6,1
384
+ 58,0,0.7,0.1,172,27,22,6.7,3.2,0.9,1
385
+ 60,0,1.4,0.7,159,10,12,4.9,2.5,1,2
386
+ 34,1,3.7,2.1,490,115,91,6.5,2.8,0.7,1
387
+ 50,1,0.8,0.2,152,29,30,7.4,4.1,1.3,1
388
+ 38,1,2.7,1.4,105,25,21,7.5,4.2,1.2,2
389
+ 51,1,0.8,0.2,160,34,20,6.9,3.7,1.1,1
390
+ 46,1,0.8,0.2,160,31,40,7.3,3.8,1.1,1
391
+ 72,1,0.6,0.1,102,31,35,6.3,3.2,1,1
392
+ 72,1,0.8,0.2,148,23,35,6,3,1,1
393
+ 75,1,0.9,0.2,162,25,20,6.9,3.7,1.1,1
394
+ 41,1,7.5,4.3,149,94,92,6.3,3.1,0.9,1
395
+ 41,1,2.7,1.3,580,142,68,8,4,1,1
396
+ 48,0,1,0.3,310,37,56,5.9,2.5,0.7,1
397
+ 45,1,0.8,0.2,140,24,20,6.3,3.2,1,2
398
+ 74,1,1,0.3,175,30,32,6.4,3.4,1.1,1
399
+ 78,1,1,0.3,152,28,70,6.3,3.1,0.9,1
400
+ 38,1,0.8,0.2,208,25,50,7.1,3.7,1,1
401
+ 27,1,1,0.2,205,137,145,6,3,1,1
402
+ 66,0,0.7,0.2,162,24,20,6.4,3.2,1,2
403
+ 50,1,7.3,3.7,92,44,236,6.8,1.6,0.3,1
404
+ 42,0,0.5,0.1,162,155,108,8.1,4,0.9,1
405
+ 65,1,0.7,0.2,199,19,22,6.3,3.6,1.3,2
406
+ 22,1,0.8,0.2,198,20,26,6.8,3.9,1.3,1
407
+ 31,0,0.8,0.2,215,15,21,7.6,4,1.1,1
408
+ 45,1,0.7,0.2,180,18,58,6.7,3.7,1.2,2
409
+ 12,1,1,0.2,719,157,108,7.2,3.7,1,1
410
+ 48,1,2.4,1.1,554,141,73,7.5,3.6,0.9,1
411
+ 48,1,5,2.6,555,284,190,6.5,3.3,1,1
412
+ 18,1,1.4,0.6,215,440,850,5,1.9,0.6,1
413
+ 23,0,2.3,0.8,509,28,44,6.9,2.9,0.7,2
414
+ 65,1,4.9,2.7,190,33,71,7.1,2.9,0.7,1
415
+ 48,1,0.7,0.2,208,15,30,4.6,2.1,0.8,2
416
+ 65,1,1.4,0.6,260,28,24,5.2,2.2,0.7,2
417
+ 70,1,1.3,0.3,690,93,40,3.6,2.7,0.7,1
418
+ 70,1,0.6,0.1,862,76,180,6.3,2.7,0.75,1
419
+ 11,1,0.7,0.1,592,26,29,7.1,4.2,1.4,2
420
+ 50,1,4.2,2.3,450,69,50,7,3,0.7,1
421
+ 55,0,8.2,3.9,1350,52,65,6.7,2.9,0.7,1
422
+ 55,0,10.9,5.1,1350,48,57,6.4,2.3,0.5,1
423
+ 26,1,1,0.3,163,48,71,7.1,3.7,1,2
424
+ 41,1,1.2,0.5,246,34,42,6.9,3.4,0.97,1
425
+ 53,1,1.6,0.9,178,44,59,6.5,3.9,1.5,2
426
+ 32,0,0.7,0.1,240,12,15,7,3,0.7,1
427
+ 58,1,0.4,0.1,100,59,126,4.3,2.5,1.4,1
428
+ 45,1,1.3,0.6,166,49,42,5.6,2.5,0.8,2
429
+ 65,1,0.9,0.2,170,33,66,7,3,0.75,1
430
+ 52,0,0.6,0.1,194,10,12,6.9,3.3,0.9,2
431
+ 73,1,1.9,0.7,1750,102,141,5.5,2,0.5,1
432
+ 53,0,0.7,0.1,182,20,33,4.8,1.9,0.6,1
433
+ 47,0,0.8,0.2,236,10,13,6.7,2.9,0.76,2
434
+ 29,1,0.7,0.2,165,55,87,7.5,4.6,1.58,1
435
+ 41,0,0.9,0.2,201,31,24,7.6,3.8,1,2
436
+ 30,0,0.7,0.2,194,32,36,7.5,3.6,0.92,2
437
+ 17,0,0.5,0.1,206,28,21,7.1,4.5,1.7,2
438
+ 23,1,1,0.3,212,41,80,6.2,3.1,1,1
439
+ 35,1,1.6,0.7,157,15,44,5.2,2.5,0.9,1
440
+ 65,1,0.8,0.2,162,30,90,3.8,1.4,0.5,1
441
+ 42,0,0.8,0.2,168,25,18,6.2,3.1,1,1
442
+ 49,0,0.8,0.2,198,23,20,7,4.3,1.5,1
443
+ 42,0,2.3,1.1,292,29,39,4.1,1.8,0.7,1
444
+ 42,0,7.4,3.6,298,52,102,4.6,1.9,0.7,1
445
+ 42,0,0.7,0.2,152,35,81,6.2,3.2,1.06,1
446
+ 61,1,0.8,0.2,163,18,19,6.3,2.8,0.8,2
447
+ 17,1,0.9,0.2,279,40,46,7.3,4,1.2,2
448
+ 54,1,0.8,0.2,181,35,20,5.5,2.7,0.96,1
449
+ 45,0,23.3,12.8,1550,425,511,7.7,3.5,0.8,1
450
+ 48,0,0.8,0.2,142,26,25,6,2.6,0.7,1
451
+ 48,0,0.9,0.2,173,26,27,6.2,3.1,1,1
452
+ 65,1,7.9,4.3,282,50,72,6,3,1,1
453
+ 35,1,0.8,0.2,279,20,25,7.2,3.2,0.8,1
454
+ 58,1,0.9,0.2,1100,25,36,7.1,3.5,0.9,1
455
+ 46,1,0.7,0.2,224,40,23,7.1,3,0.7,1
456
+ 28,1,0.6,0.2,159,15,16,7,3.5,1,2
457
+ 21,0,0.6,0.1,186,25,22,6.8,3.4,1,1
458
+ 32,1,0.7,0.2,189,22,43,7.4,3.1,0.7,2
459
+ 61,1,0.8,0.2,192,28,35,6.9,3.4,0.9,2
460
+ 26,1,6.8,3.2,140,37,19,3.6,0.9,0.3,1
461
+ 65,1,1.1,0.5,686,16,46,5.7,1.5,0.35,1
462
+ 22,0,2.2,1,215,159,51,5.5,2.5,0.8,1
463
+ 28,0,0.8,0.2,309,55,23,6.8,4.1,1.51,1
464
+ 38,1,0.7,0.2,110,22,18,6.4,2.5,0.64,1
465
+ 25,1,0.8,0.1,130,23,42,8,4,1,1
466
+ 45,0,0.7,0.2,164,21,53,4.5,1.4,0.45,2
467
+ 45,0,0.6,0.1,270,23,42,5.1,2,0.5,2
468
+ 28,0,0.6,0.1,137,22,16,4.9,1.9,0.6,2
469
+ 28,0,1,0.3,90,18,108,6.8,3.1,0.8,2
470
+ 66,1,1,0.3,190,30,54,5.3,2.1,0.6,1
471
+ 66,1,0.8,0.2,165,22,32,4.4,2,0.8,1
472
+ 66,1,1.1,0.5,167,13,56,7.1,4.1,1.36,1
473
+ 49,0,0.6,0.1,185,17,26,6.6,2.9,0.7,2
474
+ 42,1,0.7,0.2,197,64,33,5.8,2.4,0.7,2
475
+ 42,1,1,0.3,154,38,21,6.8,3.9,1.3,2
476
+ 35,1,2,1.1,226,33,135,6,2.7,0.8,2
477
+ 38,1,2.2,1,310,119,42,7.9,4.1,1,2
478
+ 38,1,0.9,0.3,310,15,25,5.5,2.7,1,1
479
+ 55,1,0.6,0.2,220,24,32,5.1,2.4,0.88,1
480
+ 33,1,7.1,3.7,196,622,497,6.9,3.6,1.09,1
481
+ 33,1,3.4,1.6,186,779,844,7.3,3.2,0.7,1
482
+ 7,1,0.5,0.1,352,28,51,7.9,4.2,1.1,2
483
+ 45,1,2.3,1.3,282,132,368,7.3,4,1.2,1
484
+ 45,1,1.1,0.4,92,91,188,7.2,3.8,1.11,1
485
+ 30,1,0.8,0.2,182,46,57,7.8,4.3,1.2,2
486
+ 62,1,5,2.1,103,18,40,5,2.1,1.72,1
487
+ 22,0,6.7,3.2,850,154,248,6.2,2.8,0.8,1
488
+ 42,0,0.8,0.2,195,18,15,6.7,3,0.8,1
489
+ 32,1,0.7,0.2,276,102,190,6,2.9,0.93,1
490
+ 60,1,0.7,0.2,171,31,26,7,3.5,1,2
491
+ 65,1,0.8,0.1,146,17,29,5.9,3.2,1.18,2
492
+ 53,0,0.8,0.2,193,96,57,6.7,3.6,1.16,1
493
+ 27,1,1,0.3,180,56,111,6.8,3.9,1.85,2
494
+ 35,0,1,0.3,805,133,103,7.9,3.3,0.7,1
495
+ 65,1,0.7,0.2,265,30,28,5.2,1.8,0.52,2
496
+ 25,1,0.7,0.2,185,196,401,6.5,3.9,1.5,1
497
+ 32,1,0.7,0.2,165,31,29,6.1,3,0.96,2
498
+ 24,1,1,0.2,189,52,31,8,4.8,1.5,1
499
+ 67,1,2.2,1.1,198,42,39,7.2,3,0.7,1
500
+ 68,1,1.8,0.5,151,18,22,6.5,4,1.6,1
501
+ 55,1,3.6,1.6,349,40,70,7.2,2.9,0.6,1
502
+ 70,1,2.7,1.2,365,62,55,6,2.4,0.6,1
503
+ 36,1,2.8,1.5,305,28,76,5.9,2.5,0.7,1
504
+ 42,1,0.8,0.2,127,29,30,4.9,2.7,1.2,1
505
+ 53,1,19.8,10.4,238,39,221,8.1,2.5,0.4,1
506
+ 32,1,30.5,17.1,218,39,79,5.5,2.7,0.9,1
507
+ 32,1,32.6,14.1,219,95,235,5.8,3.1,1.1,1
508
+ 56,1,17.7,8.8,239,43,185,5.6,2.4,0.7,1
509
+ 50,1,0.9,0.3,194,190,73,7.5,3.9,1,1
510
+ 46,1,18.4,8.5,450,119,230,7.5,3.3,0.7,1
511
+ 46,1,20,10,254,140,540,5.4,3,1.2,1
512
+ 37,0,0.8,0.2,205,31,36,9.2,4.6,1,2
513
+ 45,1,2.2,1.6,320,37,48,6.8,3.4,1,1
514
+ 56,1,1,0.3,195,22,28,5.8,2.6,0.8,2
515
+ 69,1,0.9,0.2,215,32,24,6.9,3,0.7,1
516
+ 49,1,1,0.3,230,48,58,8.4,4.2,1,1
517
+ 49,1,3.9,2.1,189,65,181,6.9,3,0.7,1
518
+ 60,1,0.9,0.3,168,16,24,6.7,3,0.8,1
519
+ 28,1,0.9,0.2,215,50,28,8,4,1,1
520
+ 45,1,2.9,1.4,210,74,68,7.2,3.6,1,1
521
+ 35,1,26.3,12.1,108,168,630,9.2,2,0.3,1
522
+ 62,1,1.8,0.9,224,69,155,8.6,4,0.8,1
523
+ 55,1,4.4,2.9,230,14,25,7.1,2.1,0.4,1
524
+ 46,0,0.8,0.2,185,24,15,7.9,3.7,0.8,1
525
+ 50,1,0.6,0.2,137,15,16,4.8,2.6,1.1,1
526
+ 29,1,0.8,0.2,156,12,15,6.8,3.7,1.1,2
527
+ 53,0,0.9,0.2,210,35,32,8,3.9,0.9,2
528
+ 46,1,9.4,5.2,268,21,63,6.4,2.8,0.8,1
529
+ 40,1,3.5,1.6,298,68,200,7.1,3.4,0.9,1
530
+ 45,1,1.7,0.8,315,12,38,6.3,2.1,0.5,1
531
+ 55,1,3.3,1.5,214,54,152,5.1,1.8,0.5,1
532
+ 22,0,1.1,0.3,138,14,21,7,3.8,1.1,2
533
+ 40,1,30.8,18.3,285,110,186,7.9,2.7,0.5,1
534
+ 62,1,0.7,0.2,162,12,17,8.2,3.2,0.6,2
535
+ 46,0,1.4,0.4,298,509,623,3.6,1,0.3,1
536
+ 39,1,1.6,0.8,230,88,74,8,4,1,2
537
+ 60,1,19.6,9.5,466,46,52,6.1,2,0.4,1
538
+ 46,1,15.8,7.2,227,67,220,6.9,2.6,0.6,1
539
+ 10,0,0.8,0.1,395,25,75,7.6,3.6,0.9,1
540
+ 52,1,1.8,0.8,97,85,78,6.4,2.7,0.7,1
541
+ 65,0,0.7,0.2,406,24,45,7.2,3.5,0.9,2
542
+ 42,1,0.8,0.2,114,21,23,7,3,0.7,2
543
+ 42,1,0.8,0.2,198,29,19,6.6,3,0.8,2
544
+ 62,1,0.7,0.2,173,46,47,7.3,4.1,1.2,2
545
+ 40,1,1.2,0.6,204,23,27,7.6,4,1.1,1
546
+ 54,0,5.5,3.2,350,67,42,7,3.2,0.8,1
547
+ 45,0,0.7,0.2,153,41,42,4.5,2.2,0.9,2
548
+ 45,1,20.2,11.7,188,47,32,5.4,2.3,0.7,1
549
+ 50,0,27.7,10.8,380,39,348,7.1,2.3,0.4,1
550
+ 42,1,11.1,6.1,214,60,186,6.9,2.8,2.8,1
551
+ 40,0,2.1,1,768,74,141,7.8,4.9,1.6,1
552
+ 46,1,3.3,1.5,172,25,41,5.6,2.4,0.7,1
553
+ 29,1,1.2,0.4,160,20,22,6.2,3,0.9,2
554
+ 45,1,0.6,0.1,196,29,30,5.8,2.9,1,1
555
+ 46,1,10.2,4.2,232,58,140,7,2.7,0.6,1
556
+ 73,1,1.8,0.9,220,20,43,6.5,3,0.8,1
557
+ 55,1,0.8,0.2,290,139,87,7,3,0.7,1
558
+ 51,1,0.7,0.1,180,25,27,6.1,3.1,1,1
559
+ 51,1,2.9,1.2,189,80,125,6.2,3.1,1,1
560
+ 51,1,4,2.5,275,382,330,7.5,4,1.1,1
561
+ 26,1,42.8,19.7,390,75,138,7.5,2.6,0.5,1
562
+ 66,1,15.2,7.7,356,321,562,6.5,2.2,0.4,1
563
+ 66,1,16.6,7.6,315,233,384,6.9,2,0.4,1
564
+ 66,1,17.3,8.5,388,173,367,7.8,2.6,0.5,1
565
+ 64,1,1.4,0.5,298,31,83,7.2,2.6,0.5,1
566
+ 38,0,0.6,0.1,165,22,34,5.9,2.9,0.9,2
567
+ 43,1,22.5,11.8,143,22,143,6.6,2.1,0.46,1
568
+ 50,0,1,0.3,191,22,31,7.8,4,1,2
569
+ 52,1,2.7,1.4,251,20,40,6,1.7,0.39,1
570
+ 20,0,16.7,8.4,200,91,101,6.9,3.5,1.02,1
571
+ 16,1,7.7,4.1,268,213,168,7.1,4,1.2,1
572
+ 16,1,2.6,1.2,236,131,90,5.4,2.6,0.9,1
573
+ 90,1,1.1,0.3,215,46,134,6.9,3,0.7,1
574
+ 32,1,15.6,9.5,134,54,125,5.6,4,2.5,1
575
+ 32,1,3.7,1.6,612,50,88,6.2,1.9,0.4,1
576
+ 32,1,12.1,6,515,48,92,6.6,2.4,0.5,1
577
+ 32,1,25,13.7,560,41,88,7.9,2.5,2.5,1
578
+ 32,1,15,8.2,289,58,80,5.3,2.2,0.7,1
579
+ 32,1,12.7,8.4,190,28,47,5.4,2.6,0.9,1
580
+ 60,1,0.5,0.1,500,20,34,5.9,1.6,0.37,2
581
+ 40,1,0.6,0.1,98,35,31,6,3.2,1.1,1
582
+ 52,1,0.8,0.2,245,48,49,6.4,3.2,1,1
583
+ 31,1,1.3,0.5,184,29,32,6.8,3.4,1,1
584
+ 38,1,1,0.3,216,21,24,7.3,4.4,1.5,2
README.md CHANGED
@@ -1,3 +1,31 @@
1
  ---
2
- license: cc-by-4.0
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ language:
3
+ - en
4
+ tags:
5
+ - ilpd
6
+ - tabular_classification
7
+ - binary_classification
8
+ - multiclass_classification
9
+ pretty_name: ILPD
10
+ size_categories:
11
+ - 10K<n<100K
12
+ task_categories: # Full list at https://github.com/huggingface/hub-docs/blob/main/js/src/lib/interfaces/Types.ts
13
+ - tabular-classification
14
+ configs:
15
+ - liver
16
  ---
17
+ # ILPD
18
+ The [ILPD dataset](https://archive.ics.uci.edu/ml/datasets/ILPD) from the [UCI ML repository](https://archive.ics.uci.edu/ml/datasets).
19
+
20
+
21
+ # Configurations and tasks
22
+ | **Configuration** | **Task** | **Description** |
23
+ |-------------------|---------------------------|---------------------------------------|
24
+ | liver | Binary classification | Does the patient have liver problems? |
25
+
26
+ # Usage
27
+ ```python
28
+ from datasets import load_dataset
29
+
30
+ dataset = load_dataset("mstz/ilpd", "liver")["train"]
31
+ ```
liver.py ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ILPD"""
2
+
3
+ from typing import List
4
+ from functools import partial
5
+
6
+ import datasets
7
+
8
+ import pandas
9
+
10
+
11
+ VERSION = datasets.Version("1.0.0")
12
+
13
+ DESCRIPTION = "ILPD dataset from the UCI ML repository."
14
+ _HOMEPAGE = "https://archive.ics.uci.edu/ml/datasets/ILPD"
15
+ _URLS = ("https://archive.ics.uci.edu/ml/datasets/ILPD")
16
+ _CITATION = """
17
+ @misc{misc_ilpd_(indian_liver_patient_dataset)_225,
18
+ author = {Ramana,Bendi & Venkateswarlu,N.},
19
+ title = {{ILPD (Indian Liver Patient Dataset)}},
20
+ year = {2012},
21
+ howpublished = {UCI Machine Learning Repository},
22
+ note = {{DOI}: \\url{10.24432/C5D02C}}
23
+ }"""
24
+
25
+ # Dataset info
26
+ urls_per_split = {
27
+ "train": "https://huggingface.co/datasets/mstz/ilpd/raw/main/Indian Liver Patient Dataset (ILPD).csv"
28
+ }
29
+ features_types_per_config = {
30
+ "ilpd": {
31
+ "age": datasets.Value("int8"),
32
+ "is_male": datasets.Value("bool"),
33
+ "total_bilirubin": datasets.Value("float64"),
34
+ "direct_ribilubin": datasets.Value("float64"),
35
+ "alkaline_phosphotase": datasets.Value("float64"),
36
+ "alamine_aminotransferasi": datasets.Value("float64"),
37
+ "aspartate_aminotransferase": datasets.Value("float64"),
38
+ "total_proteins": datasets.Value("float64"),
39
+ "albumin": datasets.Value("float64"),
40
+ "albumin_to_globulin_ratio": datasets.Value("float64"),
41
+ "class": datasets.ClassLabel(num_classes=2, names=("no", "yes"))
42
+ }
43
+ }
44
+ features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config}
45
+
46
+
47
+ class ILPDConfig(datasets.BuilderConfig):
48
+ def __init__(self, **kwargs):
49
+ super(ILPDConfig, self).__init__(version=VERSION, **kwargs)
50
+ self.features = features_per_config[kwargs["name"]]
51
+
52
+
53
+ class ILPD(datasets.GeneratorBasedBuilder):
54
+ # dataset versions
55
+ DEFAULT_CONFIG = "liver"
56
+ BUILDER_CONFIGS = [
57
+ ILPDConfig(name="liver",
58
+ description="ILPD for binary classification.")
59
+ ]
60
+
61
+ def _info(self):
62
+ info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE,
63
+ features=features_per_config[self.config.name])
64
+
65
+ return info
66
+
67
+ def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
68
+ downloads = dl_manager.download_and_extract(urls_per_split)
69
+
70
+ return [
71
+ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]})
72
+ ]
73
+
74
+ def _generate_examples(self, filepath: str):
75
+ data = pandas.read_csv(filepath)
76
+ data = self.preprocess(data, config=self.config.name)
77
+
78
+ for row_id, row in data.iterrows():
79
+ data_row = dict(row)
80
+
81
+ yield row_id, data_row