Datasets:
Upload 3 files
Browse files- README.md +32 -1
- magic.py +159 -0
- magic04.data +0 -0
README.md
CHANGED
@@ -1,3 +1,34 @@
|
|
1 |
---
|
2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
tags:
|
5 |
+
- magic
|
6 |
+
- tabular_classification
|
7 |
+
- binary_classification
|
8 |
+
pretty_name: Magic
|
9 |
+
size_categories:
|
10 |
+
- 10K<n<100K
|
11 |
+
task_categories: # Full list at https://github.com/huggingface/hub-docs/blob/main/js/src/lib/interfaces/Types.ts
|
12 |
+
- tabular-classification
|
13 |
+
configs:
|
14 |
+
- magic
|
15 |
---
|
16 |
+
# Magic
|
17 |
+
The [Magic dataset](https://archive.ics.uci.edu/ml/datasets/Magic) from the [UCI ML repository](https://archive.ics.uci.edu/ml/datasets).
|
18 |
+
|
19 |
+
# Configurations and tasks
|
20 |
+
| **Configuration** | **Task** | **Description** |
|
21 |
+
|-------------------|---------------------------|---------------------------------------------------------------|
|
22 |
+
| magic | Binary classification | Classify the person's magic as over or under the threshold. |
|
23 |
+
|
24 |
+
|
25 |
+
# Usage
|
26 |
+
```python
|
27 |
+
from datasets import load_dataset
|
28 |
+
|
29 |
+
dataset = load_dataset("mstz/magic", "magic")["train"]
|
30 |
+
```
|
31 |
+
|
32 |
+
# Features
|
33 |
+
|**Feature** |**Type** | **Description** |
|
34 |
+
|
magic.py
ADDED
@@ -0,0 +1,159 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Magic"""
|
2 |
+
|
3 |
+
from typing import List
|
4 |
+
from functools import partial
|
5 |
+
|
6 |
+
import datasets
|
7 |
+
|
8 |
+
import pandas
|
9 |
+
|
10 |
+
|
11 |
+
VERSION = datasets.Version("1.0.0")
|
12 |
+
_BASE_FEATURE_NAMES = [
|
13 |
+
"major_axis_length"
|
14 |
+
"minor_axis_length"
|
15 |
+
"log_of_sum_of_content"
|
16 |
+
"ratio_of_sum_of_highest_pixels_and_size"
|
17 |
+
"ratio_of_highest_pixel_and_size"
|
18 |
+
"projected_distance_highest_to_center_pixel"
|
19 |
+
"third_root_of_third_moment_along_major_axis"
|
20 |
+
"third_root_of_third_moment_along_minor_axis"
|
21 |
+
"angle_major_axis_to_origin"
|
22 |
+
"distance_origin_to_center"
|
23 |
+
"class"
|
24 |
+
]
|
25 |
+
|
26 |
+
|
27 |
+
DESCRIPTION = "Magic dataset from the UCI ML repository."
|
28 |
+
_HOMEPAGE = "https://archive.ics.uci.edu/ml/datasets/Magic"
|
29 |
+
_URLS = ("https://archive.ics.uci.edu/ml/datasets/Magic")
|
30 |
+
_CITATION = """
|
31 |
+
@misc{misc_magic_gamma_telescope_159,
|
32 |
+
author = {Bock,R.},
|
33 |
+
title = {{MAGIC Gamma Telescope}},
|
34 |
+
year = {2007},
|
35 |
+
howpublished = {UCI Machine Learning Repository},
|
36 |
+
note = {{DOI}: \\url{10.24432/C52C8B}}
|
37 |
+
}"""
|
38 |
+
|
39 |
+
# Dataset info
|
40 |
+
urls_per_split = {
|
41 |
+
"train": "https://huggingface.co/datasets/mstz/magic/raw/main/magic04.data"
|
42 |
+
}
|
43 |
+
features_types_per_config = {
|
44 |
+
"magic": {
|
45 |
+
"major_axis_length": datasets.Value("float64"),
|
46 |
+
"minor_axis_length": datasets.Value("float64"),
|
47 |
+
"log_of_sum_of_content": datasets.Value("float64"),
|
48 |
+
"ratio_of_sum_of_highest_pixels_and_size": datasets.Value("float64"),
|
49 |
+
"ratio_of_highest_pixel_and_size": datasets.Value("float64"),
|
50 |
+
"projected_distance_highest_to_center_pixel": datasets.Value("float64"),
|
51 |
+
"third_root_of_third_moment_along_major_axis": datasets.Value("float64"),
|
52 |
+
"third_root_of_third_moment_along_minor_axis": datasets.Value("float64"),
|
53 |
+
"angle_major_axis_to_origin": datasets.Value("float64"),
|
54 |
+
"distance_origin_to_center": datasets.Value("float64"),
|
55 |
+
"class": datasets.ClassLabel(num_classes=2, names=("no", "yes"))
|
56 |
+
}
|
57 |
+
}
|
58 |
+
features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config}
|
59 |
+
|
60 |
+
|
61 |
+
class MagicConfig(datasets.BuilderConfig):
|
62 |
+
def __init__(self, **kwargs):
|
63 |
+
super(MagicConfig, self).__init__(version=VERSION, **kwargs)
|
64 |
+
self.features = features_per_config[kwargs["name"]]
|
65 |
+
|
66 |
+
|
67 |
+
class Magic(datasets.GeneratorBasedBuilder):
|
68 |
+
# dataset versions
|
69 |
+
DEFAULT_CONFIG = "magic"
|
70 |
+
BUILDER_CONFIGS = [
|
71 |
+
MagicConfig(name="magic",
|
72 |
+
description="Magic for binary classification.")
|
73 |
+
]
|
74 |
+
|
75 |
+
|
76 |
+
def _info(self):
|
77 |
+
info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE,
|
78 |
+
features=features_per_config[self.config.name])
|
79 |
+
|
80 |
+
return info
|
81 |
+
|
82 |
+
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
83 |
+
downloads = dl_manager.download_and_extract(urls_per_split)
|
84 |
+
|
85 |
+
return [
|
86 |
+
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]})
|
87 |
+
]
|
88 |
+
|
89 |
+
def _generate_examples(self, filepath: str):
|
90 |
+
if self.config.name == "encoding":
|
91 |
+
data = self.encodings()
|
92 |
+
|
93 |
+
for row_id, row in data.iterrows():
|
94 |
+
data_row = dict(row)
|
95 |
+
|
96 |
+
yield row_id, data_row
|
97 |
+
|
98 |
+
elif self.config.name in ["magic", "magic-no race", "race"]:
|
99 |
+
data = pandas.read_csv(filepath)
|
100 |
+
data = self.preprocess(data, config=self.config.name)
|
101 |
+
|
102 |
+
for row_id, row in data.iterrows():
|
103 |
+
data_row = dict(row)
|
104 |
+
|
105 |
+
yield row_id, data_row
|
106 |
+
|
107 |
+
else:
|
108 |
+
raise ValueError(f"Unknown config: {self.config.name}")
|
109 |
+
|
110 |
+
def encodings(self):
|
111 |
+
data = [pandas.DataFrame([(feature, original_value, encoded_value)
|
112 |
+
for original_value, encoded_value in d.items()],
|
113 |
+
columns=["feature", "original_value", "encoded_value"])
|
114 |
+
for feature, d in _ENCODING_DICS.items()]
|
115 |
+
data.append(pandas.DataFrame([("race", original_value, encoded_value)
|
116 |
+
for original_value, encoded_value in _RACE_ENCODING.items()],
|
117 |
+
columns=["feature", "original_value", "encoded_value"]))
|
118 |
+
data.append(pandas.DataFrame([("education", original_value, encoded_value)
|
119 |
+
for original_value, encoded_value in _EDUCATION_ENCODING.items()],
|
120 |
+
columns=["feature", "original_value", "encoded_value"]))
|
121 |
+
data = pandas.concat(data, axis="rows").reset_index()
|
122 |
+
data.drop("index", axis="columns", inplace=True)
|
123 |
+
|
124 |
+
return data
|
125 |
+
|
126 |
+
|
127 |
+
def preprocess(self, data: pandas.DataFrame, config: str = DEFAULT_CONFIG) -> pandas.DataFrame:
|
128 |
+
data.drop("education", axis="columns", inplace=True)
|
129 |
+
data = data.rename(columns={"threshold": "over_threshold", "sex": "is_male"})
|
130 |
+
|
131 |
+
data = data[["age", "capital_gain", "capital_loss", "education-num", "final_weight",
|
132 |
+
"hours_per_week", "marital_status", "native_country", "occupation",
|
133 |
+
"race", "relationship", "is_male", "workclass", "over_threshold"]]
|
134 |
+
data.columns = _BASE_FEATURE_NAMES
|
135 |
+
|
136 |
+
for feature in _ENCODING_DICS:
|
137 |
+
encoding_function = partial(self.encode, feature)
|
138 |
+
data.loc[:, feature] = data[feature].apply(encoding_function)
|
139 |
+
|
140 |
+
|
141 |
+
if config == "magic":
|
142 |
+
return data[list(features_types_per_config["magic"].keys())]
|
143 |
+
elif config == "magic-no race":
|
144 |
+
return data[list(features_types_per_config["magic-no race"].keys())]
|
145 |
+
elif config =="race":
|
146 |
+
data.loc[:, "race"] = data.race.apply(self.encode_race)
|
147 |
+
data = data[list(features_types_per_config["race"].keys())]
|
148 |
+
|
149 |
+
return data
|
150 |
+
else:
|
151 |
+
raise ValueError(f"Unknown config: {config}")
|
152 |
+
|
153 |
+
def encode(self, feature, value):
|
154 |
+
if feature in _ENCODING_DICS:
|
155 |
+
return _ENCODING_DICS[feature][value]
|
156 |
+
raise ValueError(f"Unknown feature: {feature}")
|
157 |
+
|
158 |
+
def encode_race(self, race):
|
159 |
+
return _RACE_ENCODING[race]
|
magic04.data
ADDED
The diff for this file is too large to render.
See raw diff
|
|