"""Magic""" from typing import List from functools import partial import datasets import pandas VERSION = datasets.Version("1.0.0") _BASE_FEATURE_NAMES = [ "major_axis_length" "minor_axis_length" "log_of_sum_of_content" "ratio_of_sum_of_highest_pixels_and_size" "ratio_of_highest_pixel_and_size" "projected_distance_highest_to_center_pixel" "third_root_of_third_moment_along_major_axis" "third_root_of_third_moment_along_minor_axis" "angle_major_axis_to_origin" "distance_origin_to_center" "class" ] DESCRIPTION = "Magic dataset from the UCI ML repository." _HOMEPAGE = "https://archive.ics.uci.edu/ml/datasets/Magic" _URLS = ("https://archive.ics.uci.edu/ml/datasets/Magic") _CITATION = """ @misc{misc_magic_gamma_telescope_159, author = {Bock,R.}, title = {{MAGIC Gamma Telescope}}, year = {2007}, howpublished = {UCI Machine Learning Repository}, note = {{DOI}: \\url{10.24432/C52C8B}} }""" # Dataset info urls_per_split = { "train": "https://huggingface.co/datasets/mstz/magic/raw/main/magic04.data" } features_types_per_config = { "magic": { "major_axis_length": datasets.Value("float64"), "minor_axis_length": datasets.Value("float64"), "log_of_sum_of_content": datasets.Value("float64"), "ratio_of_sum_of_highest_pixels_and_size": datasets.Value("float64"), "ratio_of_highest_pixel_and_size": datasets.Value("float64"), "projected_distance_highest_to_center_pixel": datasets.Value("float64"), "third_root_of_third_moment_along_major_axis": datasets.Value("float64"), "third_root_of_third_moment_along_minor_axis": datasets.Value("float64"), "angle_major_axis_to_origin": datasets.Value("float64"), "distance_origin_to_center": datasets.Value("float64"), "class": datasets.ClassLabel(num_classes=2, names=("no", "yes")) } } features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config} class MagicConfig(datasets.BuilderConfig): def __init__(self, **kwargs): super(MagicConfig, self).__init__(version=VERSION, **kwargs) self.features = features_per_config[kwargs["name"]] class Magic(datasets.GeneratorBasedBuilder): # dataset versions DEFAULT_CONFIG = "magic" BUILDER_CONFIGS = [ MagicConfig(name="magic", description="Magic for binary classification.") ] def _info(self): info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE, features=features_per_config[self.config.name]) return info def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: downloads = dl_manager.download_and_extract(urls_per_split) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]}) ] def _generate_examples(self, filepath: str): if self.config.name == "encoding": data = self.encodings() for row_id, row in data.iterrows(): data_row = dict(row) yield row_id, data_row elif self.config.name in ["magic", "magic-no race", "race"]: data = pandas.read_csv(filepath) data = self.preprocess(data, config=self.config.name) for row_id, row in data.iterrows(): data_row = dict(row) yield row_id, data_row else: raise ValueError(f"Unknown config: {self.config.name}") def encodings(self): data = [pandas.DataFrame([(feature, original_value, encoded_value) for original_value, encoded_value in d.items()], columns=["feature", "original_value", "encoded_value"]) for feature, d in _ENCODING_DICS.items()] data.append(pandas.DataFrame([("race", original_value, encoded_value) for original_value, encoded_value in _RACE_ENCODING.items()], columns=["feature", "original_value", "encoded_value"])) data.append(pandas.DataFrame([("education", original_value, encoded_value) for original_value, encoded_value in _EDUCATION_ENCODING.items()], columns=["feature", "original_value", "encoded_value"])) data = pandas.concat(data, axis="rows").reset_index() data.drop("index", axis="columns", inplace=True) return data def preprocess(self, data: pandas.DataFrame, config: str = DEFAULT_CONFIG) -> pandas.DataFrame: data.drop("education", axis="columns", inplace=True) data = data.rename(columns={"threshold": "over_threshold", "sex": "is_male"}) data = data[["age", "capital_gain", "capital_loss", "education-num", "final_weight", "hours_per_week", "marital_status", "native_country", "occupation", "race", "relationship", "is_male", "workclass", "over_threshold"]] data.columns = _BASE_FEATURE_NAMES for feature in _ENCODING_DICS: encoding_function = partial(self.encode, feature) data.loc[:, feature] = data[feature].apply(encoding_function) if config == "magic": return data[list(features_types_per_config["magic"].keys())] elif config == "magic-no race": return data[list(features_types_per_config["magic-no race"].keys())] elif config =="race": data.loc[:, "race"] = data.race.apply(self.encode_race) data = data[list(features_types_per_config["race"].keys())] return data else: raise ValueError(f"Unknown config: {config}") def encode(self, feature, value): if feature in _ENCODING_DICS: return _ENCODING_DICS[feature][value] raise ValueError(f"Unknown feature: {feature}") def encode_race(self, race): return _RACE_ENCODING[race]