mstz commited on
Commit
3a8bcb6
1 Parent(s): 45894b8

Upload 3 files

Browse files
Files changed (3) hide show
  1. README.md +36 -1
  2. steel_plates.csv +0 -0
  3. steel_plates.py +347 -0
README.md CHANGED
@@ -1,3 +1,38 @@
1
  ---
2
- license: cc-by-4.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ language:
3
+ - en
4
+ tags:
5
+ - steel_plates
6
+ - tabular_classification
7
+ - binary_classification
8
+ - multiclass_classification
9
+ pretty_name: Landsat
10
+ size_categories:
11
+ - 1K<n<5K
12
+ task_categories: # Full list at https://github.com/huggingface/hub-docs/blob/main/js/src/lib/interfaces/Types.ts
13
+ - tabular-classification
14
+ configs:
15
+ - steel_plates
16
+ - steel_plates_0
17
+ - steel_plates_1
18
+ - steel_plates_2
19
+ - steel_plates_3
20
+ - steel_plates_4
21
+ - steel_plates_5
22
+ - steel_plates_6
23
+
24
  ---
25
+ # Landsat
26
+ The [Steel Plates dataset](https://archive-beta.ics.uci.edu/dataset/198/steel+plates+faults) from the [UCI repository](https://archive-beta.ics.uci.edu/).
27
+
28
+ # Configurations and tasks
29
+ | **Configuration** | **Task** | **Description** |
30
+ |-----------------------|---------------------------|-------------------------|
31
+ | steel_plates | Multiclass classification.| |
32
+ | steel_plates_0 | Binary classification. | Is the input of class 0? |
33
+ | steel_plates_1 | Binary classification. | Is the input of class 1? |
34
+ | steel_plates_2 | Binary classification. | Is the input of class 2? |
35
+ | steel_plates_3 | Binary classification. | Is the input of class 3? |
36
+ | steel_plates_4 | Binary classification. | Is the input of class 4? |
37
+ | steel_plates_5 | Binary classification. | Is the input of class 5? |
38
+ | steel_plates_6 | Binary classification. | Is the input of class 6? |
steel_plates.csv ADDED
The diff for this file is too large to render. See raw diff
 
steel_plates.py ADDED
@@ -0,0 +1,347 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Landsat Dataset"""
2
+
3
+ from typing import List
4
+ from functools import partial
5
+
6
+ import datasets
7
+
8
+ import pandas
9
+
10
+
11
+ VERSION = datasets.Version("1.0.0")
12
+
13
+ _ENCODING_DICS = {}
14
+
15
+ DESCRIPTION = "Landsat dataset."
16
+ _HOMEPAGE = "https://archive-beta.ics.uci.edu/dataset/198/steel+plates+faults"
17
+ _URLS = ("https://archive-beta.ics.uci.edu/dataset/198/steel+plates+faults")
18
+ _CITATION = """
19
+ @misc{misc_steel_plates_faults_198,
20
+ author = {Buscema,M, Terzi,S & Tastle,W},
21
+ title = {{Steel Plates Faults}},
22
+ year = {2010},
23
+ howpublished = {UCI Machine Learning Repository},
24
+ note = {{DOI}: \\url{10.24432/C5J88N}}
25
+ }
26
+ """
27
+
28
+ # Dataset info
29
+ urls_per_split = {
30
+ "train": "https://huggingface.co/datasets/mstz/steel_plates/raw/main/steel_plates.csv"
31
+ }
32
+ features_types_per_config = {
33
+ "steel_plates": {
34
+ "x_minimum": datasets.Value("int64"),
35
+ "x_maximum": datasets.Value("int64"),
36
+ "y_minimum": datasets.Value("int64"),
37
+ "y_maximum": datasets.Value("int64"),
38
+ "pixels_areas": datasets.Value("int64"),
39
+ "x_perimeter": datasets.Value("int64"),
40
+ "y_perimeter": datasets.Value("int64"),
41
+ "sum_of_luminosity": datasets.Value("int64"),
42
+ "minimum_of_luminosity": datasets.Value("int64"),
43
+ "maximum_of_luminosity": datasets.Value("int64"),
44
+ "length_of_conveyer": datasets.Value("int64"),
45
+ "typeofsteel_a300": datasets.Value("int64"),
46
+ "typeofsteel_a400": datasets.Value("int64"),
47
+ "steel_plate_thickness": datasets.Value("int64"),
48
+ "edges_index": datasets.Value("float64"),
49
+ "empty_index": datasets.Value("float64"),
50
+ "square_index": datasets.Value("float64"),
51
+ "outside_x_index": datasets.Value("float64"),
52
+ "edges_x_index": datasets.Value("float64"),
53
+ "edges_y_index": datasets.Value("float64"),
54
+ "outside_global_index": datasets.Value("float64"),
55
+ "logofareas": datasets.Value("float64"),
56
+ "log_x_index": datasets.Value("float64"),
57
+ "log_y_index": datasets.Value("float64"),
58
+ "orientation_index": datasets.Value("float64"),
59
+ "luminosity_index": datasets.Value("float64"),
60
+ "sigmoidofareas": datasets.Value("float64"),
61
+ "class": datasets.ClassLabel(num_classes=7),
62
+ },
63
+ "steel_plates_0": {
64
+ "x_minimum": datasets.Value("int64"),
65
+ "x_maximum": datasets.Value("int64"),
66
+ "y_minimum": datasets.Value("int64"),
67
+ "y_maximum": datasets.Value("int64"),
68
+ "pixels_areas": datasets.Value("int64"),
69
+ "x_perimeter": datasets.Value("int64"),
70
+ "y_perimeter": datasets.Value("int64"),
71
+ "sum_of_luminosity": datasets.Value("int64"),
72
+ "minimum_of_luminosity": datasets.Value("int64"),
73
+ "maximum_of_luminosity": datasets.Value("int64"),
74
+ "length_of_conveyer": datasets.Value("int64"),
75
+ "typeofsteel_a300": datasets.Value("int64"),
76
+ "typeofsteel_a400": datasets.Value("int64"),
77
+ "steel_plate_thickness": datasets.Value("int64"),
78
+ "edges_index": datasets.Value("float64"),
79
+ "empty_index": datasets.Value("float64"),
80
+ "square_index": datasets.Value("float64"),
81
+ "outside_x_index": datasets.Value("float64"),
82
+ "edges_x_index": datasets.Value("float64"),
83
+ "edges_y_index": datasets.Value("float64"),
84
+ "outside_global_index": datasets.Value("float64"),
85
+ "logofareas": datasets.Value("float64"),
86
+ "log_x_index": datasets.Value("float64"),
87
+ "log_y_index": datasets.Value("float64"),
88
+ "orientation_index": datasets.Value("float64"),
89
+ "luminosity_index": datasets.Value("float64"),
90
+ "sigmoidofareas": datasets.Value("float64"),
91
+ "class": datasets.ClassLabel(num_classes=2),
92
+ },
93
+ "steel_plates_1": {
94
+ "x_minimum": datasets.Value("int64"),
95
+ "x_maximum": datasets.Value("int64"),
96
+ "y_minimum": datasets.Value("int64"),
97
+ "y_maximum": datasets.Value("int64"),
98
+ "pixels_areas": datasets.Value("int64"),
99
+ "x_perimeter": datasets.Value("int64"),
100
+ "y_perimeter": datasets.Value("int64"),
101
+ "sum_of_luminosity": datasets.Value("int64"),
102
+ "minimum_of_luminosity": datasets.Value("int64"),
103
+ "maximum_of_luminosity": datasets.Value("int64"),
104
+ "length_of_conveyer": datasets.Value("int64"),
105
+ "typeofsteel_a300": datasets.Value("int64"),
106
+ "typeofsteel_a400": datasets.Value("int64"),
107
+ "steel_plate_thickness": datasets.Value("int64"),
108
+ "edges_index": datasets.Value("float64"),
109
+ "empty_index": datasets.Value("float64"),
110
+ "square_index": datasets.Value("float64"),
111
+ "outside_x_index": datasets.Value("float64"),
112
+ "edges_x_index": datasets.Value("float64"),
113
+ "edges_y_index": datasets.Value("float64"),
114
+ "outside_global_index": datasets.Value("float64"),
115
+ "logofareas": datasets.Value("float64"),
116
+ "log_x_index": datasets.Value("float64"),
117
+ "log_y_index": datasets.Value("float64"),
118
+ "orientation_index": datasets.Value("float64"),
119
+ "luminosity_index": datasets.Value("float64"),
120
+ "sigmoidofareas": datasets.Value("float64"),
121
+ "class": datasets.ClassLabel(num_classes=2),
122
+ },
123
+ "steel_plates_2": {
124
+ "x_minimum": datasets.Value("int64"),
125
+ "x_maximum": datasets.Value("int64"),
126
+ "y_minimum": datasets.Value("int64"),
127
+ "y_maximum": datasets.Value("int64"),
128
+ "pixels_areas": datasets.Value("int64"),
129
+ "x_perimeter": datasets.Value("int64"),
130
+ "y_perimeter": datasets.Value("int64"),
131
+ "sum_of_luminosity": datasets.Value("int64"),
132
+ "minimum_of_luminosity": datasets.Value("int64"),
133
+ "maximum_of_luminosity": datasets.Value("int64"),
134
+ "length_of_conveyer": datasets.Value("int64"),
135
+ "typeofsteel_a300": datasets.Value("int64"),
136
+ "typeofsteel_a400": datasets.Value("int64"),
137
+ "steel_plate_thickness": datasets.Value("int64"),
138
+ "edges_index": datasets.Value("float64"),
139
+ "empty_index": datasets.Value("float64"),
140
+ "square_index": datasets.Value("float64"),
141
+ "outside_x_index": datasets.Value("float64"),
142
+ "edges_x_index": datasets.Value("float64"),
143
+ "edges_y_index": datasets.Value("float64"),
144
+ "outside_global_index": datasets.Value("float64"),
145
+ "logofareas": datasets.Value("float64"),
146
+ "log_x_index": datasets.Value("float64"),
147
+ "log_y_index": datasets.Value("float64"),
148
+ "orientation_index": datasets.Value("float64"),
149
+ "luminosity_index": datasets.Value("float64"),
150
+ "sigmoidofareas": datasets.Value("float64"),
151
+ "class": datasets.ClassLabel(num_classes=2),
152
+ },
153
+ "steel_plates_3": {
154
+ "x_minimum": datasets.Value("int64"),
155
+ "x_maximum": datasets.Value("int64"),
156
+ "y_minimum": datasets.Value("int64"),
157
+ "y_maximum": datasets.Value("int64"),
158
+ "pixels_areas": datasets.Value("int64"),
159
+ "x_perimeter": datasets.Value("int64"),
160
+ "y_perimeter": datasets.Value("int64"),
161
+ "sum_of_luminosity": datasets.Value("int64"),
162
+ "minimum_of_luminosity": datasets.Value("int64"),
163
+ "maximum_of_luminosity": datasets.Value("int64"),
164
+ "length_of_conveyer": datasets.Value("int64"),
165
+ "typeofsteel_a300": datasets.Value("int64"),
166
+ "typeofsteel_a400": datasets.Value("int64"),
167
+ "steel_plate_thickness": datasets.Value("int64"),
168
+ "edges_index": datasets.Value("float64"),
169
+ "empty_index": datasets.Value("float64"),
170
+ "square_index": datasets.Value("float64"),
171
+ "outside_x_index": datasets.Value("float64"),
172
+ "edges_x_index": datasets.Value("float64"),
173
+ "edges_y_index": datasets.Value("float64"),
174
+ "outside_global_index": datasets.Value("float64"),
175
+ "logofareas": datasets.Value("float64"),
176
+ "log_x_index": datasets.Value("float64"),
177
+ "log_y_index": datasets.Value("float64"),
178
+ "orientation_index": datasets.Value("float64"),
179
+ "luminosity_index": datasets.Value("float64"),
180
+ "sigmoidofareas": datasets.Value("float64"),
181
+ "class": datasets.ClassLabel(num_classes=2),
182
+ },
183
+ "steel_plates_4": {
184
+ "x_minimum": datasets.Value("int64"),
185
+ "x_maximum": datasets.Value("int64"),
186
+ "y_minimum": datasets.Value("int64"),
187
+ "y_maximum": datasets.Value("int64"),
188
+ "pixels_areas": datasets.Value("int64"),
189
+ "x_perimeter": datasets.Value("int64"),
190
+ "y_perimeter": datasets.Value("int64"),
191
+ "sum_of_luminosity": datasets.Value("int64"),
192
+ "minimum_of_luminosity": datasets.Value("int64"),
193
+ "maximum_of_luminosity": datasets.Value("int64"),
194
+ "length_of_conveyer": datasets.Value("int64"),
195
+ "typeofsteel_a300": datasets.Value("int64"),
196
+ "typeofsteel_a400": datasets.Value("int64"),
197
+ "steel_plate_thickness": datasets.Value("int64"),
198
+ "edges_index": datasets.Value("float64"),
199
+ "empty_index": datasets.Value("float64"),
200
+ "square_index": datasets.Value("float64"),
201
+ "outside_x_index": datasets.Value("float64"),
202
+ "edges_x_index": datasets.Value("float64"),
203
+ "edges_y_index": datasets.Value("float64"),
204
+ "outside_global_index": datasets.Value("float64"),
205
+ "logofareas": datasets.Value("float64"),
206
+ "log_x_index": datasets.Value("float64"),
207
+ "log_y_index": datasets.Value("float64"),
208
+ "orientation_index": datasets.Value("float64"),
209
+ "luminosity_index": datasets.Value("float64"),
210
+ "sigmoidofareas": datasets.Value("float64"),
211
+ "class": datasets.ClassLabel(num_classes=2),
212
+ },
213
+ "steel_plates_5": {
214
+ "x_minimum": datasets.Value("int64"),
215
+ "x_maximum": datasets.Value("int64"),
216
+ "y_minimum": datasets.Value("int64"),
217
+ "y_maximum": datasets.Value("int64"),
218
+ "pixels_areas": datasets.Value("int64"),
219
+ "x_perimeter": datasets.Value("int64"),
220
+ "y_perimeter": datasets.Value("int64"),
221
+ "sum_of_luminosity": datasets.Value("int64"),
222
+ "minimum_of_luminosity": datasets.Value("int64"),
223
+ "maximum_of_luminosity": datasets.Value("int64"),
224
+ "length_of_conveyer": datasets.Value("int64"),
225
+ "typeofsteel_a300": datasets.Value("int64"),
226
+ "typeofsteel_a400": datasets.Value("int64"),
227
+ "steel_plate_thickness": datasets.Value("int64"),
228
+ "edges_index": datasets.Value("float64"),
229
+ "empty_index": datasets.Value("float64"),
230
+ "square_index": datasets.Value("float64"),
231
+ "outside_x_index": datasets.Value("float64"),
232
+ "edges_x_index": datasets.Value("float64"),
233
+ "edges_y_index": datasets.Value("float64"),
234
+ "outside_global_index": datasets.Value("float64"),
235
+ "logofareas": datasets.Value("float64"),
236
+ "log_x_index": datasets.Value("float64"),
237
+ "log_y_index": datasets.Value("float64"),
238
+ "orientation_index": datasets.Value("float64"),
239
+ "luminosity_index": datasets.Value("float64"),
240
+ "sigmoidofareas": datasets.Value("float64"),
241
+ "class": datasets.ClassLabel(num_classes=2),
242
+ },
243
+ "steel_plates_6": {
244
+ "x_minimum": datasets.Value("int64"),
245
+ "x_maximum": datasets.Value("int64"),
246
+ "y_minimum": datasets.Value("int64"),
247
+ "y_maximum": datasets.Value("int64"),
248
+ "pixels_areas": datasets.Value("int64"),
249
+ "x_perimeter": datasets.Value("int64"),
250
+ "y_perimeter": datasets.Value("int64"),
251
+ "sum_of_luminosity": datasets.Value("int64"),
252
+ "minimum_of_luminosity": datasets.Value("int64"),
253
+ "maximum_of_luminosity": datasets.Value("int64"),
254
+ "length_of_conveyer": datasets.Value("int64"),
255
+ "typeofsteel_a300": datasets.Value("int64"),
256
+ "typeofsteel_a400": datasets.Value("int64"),
257
+ "steel_plate_thickness": datasets.Value("int64"),
258
+ "edges_index": datasets.Value("float64"),
259
+ "empty_index": datasets.Value("float64"),
260
+ "square_index": datasets.Value("float64"),
261
+ "outside_x_index": datasets.Value("float64"),
262
+ "edges_x_index": datasets.Value("float64"),
263
+ "edges_y_index": datasets.Value("float64"),
264
+ "outside_global_index": datasets.Value("float64"),
265
+ "logofareas": datasets.Value("float64"),
266
+ "log_x_index": datasets.Value("float64"),
267
+ "log_y_index": datasets.Value("float64"),
268
+ "orientation_index": datasets.Value("float64"),
269
+ "luminosity_index": datasets.Value("float64"),
270
+ "sigmoidofareas": datasets.Value("float64"),
271
+ "class": datasets.ClassLabel(num_classes=2),
272
+ },
273
+
274
+ }
275
+ features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config}
276
+
277
+
278
+ class LandsatConfig(datasets.BuilderConfig):
279
+ def __init__(self, **kwargs):
280
+ super(LandsatConfig, self).__init__(version=VERSION, **kwargs)
281
+ self.features = features_per_config[kwargs["name"]]
282
+
283
+
284
+ class Landsat(datasets.GeneratorBasedBuilder):
285
+ # dataset versions
286
+ DEFAULT_CONFIG = "steel_plates"
287
+ BUILDER_CONFIGS = [
288
+ LandsatConfig(name="steel_plates", description="Landsat for multiclass classification."),
289
+ LandsatConfig(name="steel_plates_0", description="Landsat for binary classification."),
290
+ LandsatConfig(name="steel_plates_1", description="Landsat for binary classification."),
291
+ LandsatConfig(name="steel_plates_2", description="Landsat for binary classification."),
292
+ LandsatConfig(name="steel_plates_3", description="Landsat for binary classification."),
293
+ LandsatConfig(name="steel_plates_4", description="Landsat for binary classification."),
294
+ LandsatConfig(name="steel_plates_5", description="Landsat for binary classification."),
295
+ LandsatConfig(name="steel_plates_5", description="Landsat for binary classification."),
296
+
297
+ ]
298
+
299
+
300
+ def _info(self):
301
+ info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE,
302
+ features=features_per_config[self.config.name])
303
+
304
+ return info
305
+
306
+ def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
307
+ downloads = dl_manager.download_and_extract(urls_per_split)
308
+
309
+ return [
310
+ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]}),
311
+ ]
312
+
313
+ def _generate_examples(self, filepath: str):
314
+ data = pandas.read_csv(filepath)
315
+ data = self.preprocess(data)
316
+
317
+ for row_id, row in data.iterrows():
318
+ data_row = dict(row)
319
+
320
+ yield row_id, data_row
321
+
322
+ def preprocess(self, data: pandas.DataFrame) -> pandas.DataFrame:
323
+ if self.config.name == "steel_plates_0":
324
+ data["class"] = data["class"].apply(lambda x: 1 if x == 0 else 0)
325
+ elif self.config.name == "steel_plates_1":
326
+ data["class"] = data["class"].apply(lambda x: 1 if x == 1 else 0)
327
+ elif self.config.name == "steel_plates_2":
328
+ data["class"] = data["class"].apply(lambda x: 1 if x == 2 else 0)
329
+ elif self.config.name == "steel_plates_3":
330
+ data["class"] = data["class"].apply(lambda x: 1 if x == 3 else 0)
331
+ elif self.config.name == "steel_plates_4":
332
+ data["class"] = data["class"].apply(lambda x: 1 if x == 4 else 0)
333
+ elif self.config.name == "steel_plates_5":
334
+ data["class"] = data["class"].apply(lambda x: 1 if x == 5 else 0)
335
+ elif self.config.name == "steel_plates_6":
336
+ data["class"] = data["class"].apply(lambda x: 1 if x == 6 else 0)
337
+
338
+ for feature in _ENCODING_DICS:
339
+ encoding_function = partial(self.encode, feature)
340
+ data.loc[:, feature] = data[feature].apply(encoding_function)
341
+
342
+ return data[list(features_types_per_config[self.config.name].keys())]
343
+
344
+ def encode(self, feature, value):
345
+ if feature in _ENCODING_DICS:
346
+ return _ENCODING_DICS[feature][value]
347
+ raise ValueError(f"Unknown feature: {feature}")