|
"""WaveformNoiseV1 Dataset""" |
|
|
|
from typing import List |
|
from functools import partial |
|
|
|
import datasets |
|
|
|
import pandas |
|
|
|
|
|
VERSION = datasets.Version("1.0.0") |
|
|
|
_ENCODING_DICS = {} |
|
|
|
DESCRIPTION = "WaveformNoiseV1 dataset." |
|
_HOMEPAGE = "https://archive-beta.ics.uci.edu/dataset/78/page+blocks+classification" |
|
_URLS = ("https://archive-beta.ics.uci.edu/dataset/78/page+blocks+classification") |
|
_CITATION = """ |
|
@misc{misc_waveform_database_generator_(version_1)_107, |
|
author = {Breiman,L. & Stone,C.J.}, |
|
title = {{Waveform Database Generator (Version 1)}}, |
|
year = {1988}, |
|
howpublished = {UCI Machine Learning Repository}, |
|
note = {{DOI}: \\url{10.24432/C5CS3C}} |
|
} |
|
""" |
|
|
|
|
|
urls_per_split = { |
|
"train": "https://huggingface.co/datasets/mstz/waveform_noise_v1/raw/main/data.csv" |
|
} |
|
features_types_per_config = { |
|
"waveformnoiseV1": {f"feature_{i}": datasets.Value("float64") for i in range(40)}, |
|
"waveformnoiseV1_0": {f"feature_{i}": datasets.Value("float64") for i in range(40)}, |
|
"waveformnoiseV1_1": {f"feature_{i}": datasets.Value("float64") for i in range(40)}, |
|
"waveformnoiseV1_2": {f"feature_{i}": datasets.Value("float64") for i in range(40)}, |
|
} |
|
|
|
features_types_per_config["waveformnoiseV1"]["class"] = datasets.ClassLabel(num_classes=3) |
|
features_types_per_config["waveformnoiseV1_0"]["class"] = datasets.ClassLabel(num_classes=2) |
|
features_types_per_config["waveformnoiseV1_1"]["class"] = datasets.ClassLabel(num_classes=2) |
|
features_types_per_config["waveformnoiseV1_2"]["class"] = datasets.ClassLabel(num_classes=2) |
|
features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config} |
|
|
|
|
|
class WaveformNoiseV1Config(datasets.BuilderConfig): |
|
def __init__(self, **kwargs): |
|
super(WaveformNoiseV1Config, self).__init__(version=VERSION, **kwargs) |
|
self.features = features_per_config[kwargs["name"]] |
|
|
|
|
|
class WaveformNoiseV1(datasets.GeneratorBasedBuilder): |
|
|
|
DEFAULT_CONFIG = "waveformnoiseV1" |
|
BUILDER_CONFIGS = [ |
|
WaveformNoiseV1Config(name="waveformnoiseV1", description="WaveformNoiseV1 for multiclass classification."), |
|
WaveformNoiseV1Config(name="waveformnoiseV1_0", description="WaveformNoiseV1 for binary classification."), |
|
WaveformNoiseV1Config(name="waveformnoiseV1_1", description="WaveformNoiseV1 for binary classification."), |
|
WaveformNoiseV1Config(name="waveformnoiseV1_2", description="WaveformNoiseV1 for binary classification."), |
|
|
|
] |
|
|
|
|
|
def _info(self): |
|
info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE, |
|
features=features_per_config[self.config.name]) |
|
|
|
return info |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
downloads = dl_manager.download_and_extract(urls_per_split) |
|
|
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]}), |
|
] |
|
|
|
def _generate_examples(self, filepath: str): |
|
data = pandas.read_csv(filepath, header=None) |
|
data.columns = [f"feature_{i}" for i in range(data.shape[1] - 1)] + ["class"] |
|
data = self.preprocess(data) |
|
|
|
for row_id, row in data.iterrows(): |
|
data_row = dict(row) |
|
|
|
yield row_id, data_row |
|
|
|
def preprocess(self, data: pandas.DataFrame) -> pandas.DataFrame: |
|
if self.config.name == "waveformnoiseV1_0": |
|
data["class"] = data["class"].apply(lambda x: 1 if x == 0 else 0) |
|
elif self.config.name == "waveformnoiseV1_1": |
|
data["class"] = data["class"].apply(lambda x: 1 if x == 1 else 0) |
|
elif self.config.name == "waveformnoiseV1_2": |
|
data["class"] = data["class"].apply(lambda x: 1 if x == 2 else 0) |
|
|
|
for feature in _ENCODING_DICS: |
|
encoding_function = partial(self.encode, feature) |
|
data.loc[:, feature] = data[feature].apply(encoding_function) |
|
|
|
return data[list(features_types_per_config[self.config.name].keys())] |
|
|
|
def encode(self, feature, value): |
|
if feature in _ENCODING_DICS: |
|
return _ENCODING_DICS[feature][value] |
|
raise ValueError(f"Unknown feature: {feature}") |
|
|