"""WaveformNoiseV1 Dataset""" from typing import List from functools import partial import datasets import pandas VERSION = datasets.Version("1.0.0") _ENCODING_DICS = {} DESCRIPTION = "WaveformNoiseV1 dataset." _HOMEPAGE = "https://archive-beta.ics.uci.edu/dataset/78/page+blocks+classification" _URLS = ("https://archive-beta.ics.uci.edu/dataset/78/page+blocks+classification") _CITATION = """ @misc{misc_waveform_database_generator_(version_1)_107, author = {Breiman,L. & Stone,C.J.}, title = {{Waveform Database Generator (Version 1)}}, year = {1988}, howpublished = {UCI Machine Learning Repository}, note = {{DOI}: \\url{10.24432/C5CS3C}} } """ # Dataset info urls_per_split = { "train": "https://huggingface.co/datasets/mstz/waveform_noise_v1/raw/main/data.csv" } features_types_per_config = { "waveformnoiseV1": {f"feature_{i}": datasets.Value("float64") for i in range(40)}, "waveformnoiseV1_0": {f"feature_{i}": datasets.Value("float64") for i in range(40)}, "waveformnoiseV1_1": {f"feature_{i}": datasets.Value("float64") for i in range(40)}, "waveformnoiseV1_2": {f"feature_{i}": datasets.Value("float64") for i in range(40)}, } features_types_per_config["waveformnoiseV1"]["class"] = datasets.ClassLabel(num_classes=3) features_types_per_config["waveformnoiseV1_0"]["class"] = datasets.ClassLabel(num_classes=2) features_types_per_config["waveformnoiseV1_1"]["class"] = datasets.ClassLabel(num_classes=2) features_types_per_config["waveformnoiseV1_2"]["class"] = datasets.ClassLabel(num_classes=2) features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config} class WaveformNoiseV1Config(datasets.BuilderConfig): def __init__(self, **kwargs): super(WaveformNoiseV1Config, self).__init__(version=VERSION, **kwargs) self.features = features_per_config[kwargs["name"]] class WaveformNoiseV1(datasets.GeneratorBasedBuilder): # dataset versions DEFAULT_CONFIG = "waveformnoiseV1" BUILDER_CONFIGS = [ WaveformNoiseV1Config(name="waveformnoiseV1", description="WaveformNoiseV1 for multiclass classification."), WaveformNoiseV1Config(name="waveformnoiseV1_0", description="WaveformNoiseV1 for binary classification."), WaveformNoiseV1Config(name="waveformnoiseV1_1", description="WaveformNoiseV1 for binary classification."), WaveformNoiseV1Config(name="waveformnoiseV1_2", description="WaveformNoiseV1 for binary classification."), ] def _info(self): info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE, features=features_per_config[self.config.name]) return info def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: downloads = dl_manager.download_and_extract(urls_per_split) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]}), ] def _generate_examples(self, filepath: str): data = pandas.read_csv(filepath, header=None) data.columns = [f"feature_{i}" for i in range(data.shape[1] - 1)] + ["class"] data = self.preprocess(data) for row_id, row in data.iterrows(): data_row = dict(row) yield row_id, data_row def preprocess(self, data: pandas.DataFrame) -> pandas.DataFrame: if self.config.name == "waveformnoiseV1_0": data["class"] = data["class"].apply(lambda x: 1 if x == 0 else 0) elif self.config.name == "waveformnoiseV1_1": data["class"] = data["class"].apply(lambda x: 1 if x == 1 else 0) elif self.config.name == "waveformnoiseV1_2": data["class"] = data["class"].apply(lambda x: 1 if x == 2 else 0) for feature in _ENCODING_DICS: encoding_function = partial(self.encode, feature) data.loc[:, feature] = data[feature].apply(encoding_function) return data[list(features_types_per_config[self.config.name].keys())] def encode(self, feature, value): if feature in _ENCODING_DICS: return _ENCODING_DICS[feature][value] raise ValueError(f"Unknown feature: {feature}")