|
import json |
|
|
|
import datasets |
|
|
|
_CITATION = ''' |
|
@article{lawrie2023overview, |
|
title={Overview of the TREC 2022 NeuCLIR track}, |
|
author={Lawrie, Dawn and MacAvaney, Sean and Mayfield, James and McNamee, Paul and Oard, Douglas W and Soldaini, Luca and Yang, Eugene}, |
|
journal={arXiv preprint arXiv:2304.12367}, |
|
year={2023} |
|
} |
|
''' |
|
|
|
_LANGUAGES = [ |
|
'rus', |
|
'fas', |
|
'zho', |
|
] |
|
|
|
_DESCRIPTION = 'dataset load script for NeuCLIR 2022' |
|
|
|
_DATASET_URLS = { |
|
lang: { |
|
'test': f'https://huggingface.co/datasets/MTEB/neuclir-2022-fast/resolve/main/neuclir-{lang}/test-00000-of-00001.parquet', |
|
} for lang in _LANGUAGES |
|
} |
|
|
|
_DATASET_CORPUS_URLS = { |
|
f'corpus-{lang}': { |
|
'corpus': f'https://huggingface.co/datasets/MTEB/neuclir-2022-fast/resolve/main/neuclir-{lang}/corpus-00000-of-00001.parquet' |
|
} for lang in _LANGUAGES |
|
} |
|
|
|
_DATASET_QUERIES_URLS = { |
|
f'queries-{lang}': { |
|
'queries': f'https://huggingface.co/datasets/MTEB/neuclir-2022-fast/resolve/main/neuclir-{lang}/queries-00000-of-00001.parquet' |
|
} for lang in _LANGUAGES |
|
} |
|
|
|
|
|
class MLDR(datasets.GeneratorBasedBuilder): |
|
BUILDER_CONFIGS = [datasets.BuilderConfig( |
|
version=datasets.Version('1.0.0'), |
|
name=lang, description=f'NeuCLIR dataset in language {lang}.' |
|
) for lang in _LANGUAGES |
|
] + [ |
|
datasets.BuilderConfig( |
|
version=datasets.Version('1.0.0'), |
|
name=f'corpus-{lang}', description=f'corpus of NeuCLIR dataset in language {lang}.' |
|
) for lang in _LANGUAGES |
|
] + [ |
|
datasets.BuilderConfig( |
|
version=datasets.Version('1.0.0'), |
|
name=f'queries-{lang}', description=f'queries of NeuCLIR dataset in language {lang}.' |
|
) for lang in _LANGUAGES |
|
] |
|
|
|
def _info(self): |
|
name = self.config.name |
|
if name.startswith('corpus-'): |
|
features = datasets.Features({ |
|
'_id': datasets.Value('string'), |
|
'text': datasets.Value('string'), |
|
'title': datasets.Value('string'), |
|
}) |
|
elif name.startswith("queries-"): |
|
features = datasets.Features({ |
|
'_id': datasets.Value('string'), |
|
'text': datasets.Value('string'), |
|
}) |
|
else: |
|
features = datasets.Features({ |
|
'query-id': datasets.Value('string'), |
|
'corpus-id': datasets.Value('string'), |
|
'score': datasets.Value('int32'), |
|
}) |
|
|
|
return datasets.DatasetInfo( |
|
|
|
description=_DESCRIPTION, |
|
|
|
features=features, |
|
supervised_keys=None, |
|
|
|
homepage='https://arxiv.org/abs/2304.12367', |
|
|
|
license=None, |
|
|
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
name = self.config.name |
|
if name.startswith('corpus-'): |
|
downloaded_files = dl_manager.download_and_extract(_DATASET_CORPUS_URLS[name]) |
|
splits = [ |
|
datasets.SplitGenerator( |
|
name='corpus', |
|
gen_kwargs={ |
|
'filepath': downloaded_files['corpus'], |
|
}, |
|
), |
|
] |
|
elif name.startswith("queries-"): |
|
downloaded_files = dl_manager.download_and_extract(_DATASET_QUERIES_URLS[name]) |
|
splits = [ |
|
datasets.SplitGenerator( |
|
name='queries', |
|
gen_kwargs={ |
|
'filepath': downloaded_files['queries'], |
|
}, |
|
), |
|
] |
|
else: |
|
downloaded_files = dl_manager.download_and_extract(_DATASET_URLS[name]) |
|
splits = [ |
|
datasets.SplitGenerator( |
|
name='test', |
|
gen_kwargs={ |
|
'filepath': downloaded_files['test'], |
|
}, |
|
), |
|
] |
|
return splits |
|
|
|
def _generate_examples(self, filepath): |
|
import pandas as pd |
|
|
|
name = self.config.name |
|
df = pd.read_parquet(filepath) |
|
|
|
if name.startswith('corpus-'): |
|
for index, row in df.iterrows(): |
|
yield row['_id'], { |
|
'_id': row['_id'], |
|
'text': row['text'], |
|
'title': row['title'] |
|
} |
|
elif name.startswith("queries-"): |
|
for index, row in df.iterrows(): |
|
yield row['_id'], { |
|
'_id': row['_id'], |
|
'text': row['text'] |
|
} |
|
else: |
|
for index, row in df.iterrows(): |
|
yield f"{row['query-id']}-----{row['corpus-id']}", { |
|
'query-id': row['query-id'], |
|
'corpus-id': row['corpus-id'], |
|
'score': row['score'] |
|
} |
|
|