|
|
|
|
|
[model] |
|
latent_diffusion_model = finetuned |
|
|
|
[clip_list] |
|
perceptors = ['[clip - mlfoundations - ViT-B-16--openai]', '[clip - mlfoundations - RN50x16--openai]', '[clip - mlfoundations - ViT-L-14--laion400m_e32]', '[clip - mlfoundations - ViT-B-16-plus-240--laion400m_e32]', '[clip - mlfoundations - ViT-B-32--laion2b_e16]'] |
|
|
|
[basic_settings] |
|
|
|
|
|
width = 256 |
|
height = 256 |
|
|
|
latent_diffusion_guidance_scale = 10 |
|
clip_guidance_scale = 135000 |
|
aesthetic_loss_scale = 400 |
|
augment_cuts=True |
|
|
|
|
|
starting_timestep = 0.02 |
|
init_scale = 1000 |
|
init_brightness = 0.0 |
|
|
|
[advanced_settings] |
|
|
|
use_cond_fn = True |
|
|
|
|
|
custom_schedule_setting = [[30, 1000, 8], 'gfpgan:1.5', 'scale:.9', [20, 200, 8], 'gfpgan:1', 'scale:.9', [50, 220, 2], 'gfpgan:1'] |
|
|
|
|
|
clamp_index = [2.4, 2.1] |
|
cut_overview = [8]*500 + [4]*500 |
|
cut_innercut = [0]*500 + [4]*500 |
|
cut_blur_n = [0]*1300 |
|
cut_blur_kernel = 3 |
|
cut_ic_pow = 5.6 |
|
cut_icgray_p = [0.1]*300 + [0]*1000 |
|
cutn_batches = 1 |
|
range_index = [0]*200 + [50000.0]*400 + [0]*1000 |
|
active_function = "softsign" |
|
ths_method= "clamp" |
|
tv_scales = [150]*1 + [0]*3 |
|
|
|
|
|
clip_guidance_schedule = [16000]*1000 |
|
|
|
|
|
symmetric_loss_scale = 0 |
|
|
|
|
|
|
|
scale_div = 1 |
|
|
|
opt_mag_mul = 20 |
|
opt_ddim_eta = 1.3 |
|
opt_eta_end = 1.1 |
|
opt_temperature = 0.98 |
|
|
|
|
|
grad_center = False |
|
|
|
grad_scale=0.25 |
|
score_modifier = True |
|
threshold_percentile = 0.85 |
|
threshold = 1 |
|
var_index = [2]*300 + [0]*700 |
|
var_range = 0.5 |
|
mean_index = [0]*1000 |
|
mean_range = 0.75 |
|
|
|
|
|
init_rotate=False |
|
mask_rotate=False |
|
init_magnitude = 0.18215 |
|
|
|
|
|
RGB_min = -0.95 |
|
RGB_max = 0.95 |
|
|
|
padargs = {'mode': 'constant', 'value': -1} |
|
flip_aug=False |
|
|
|
|
|
experimental_aesthetic_embeddings = True |
|
|
|
experimental_aesthetic_embeddings_weight = 0.3 |
|
|
|
experimental_aesthetic_embeddings_score = 8 |
|
|
|
|
|
grad_blur = False |
|
compress_steps = 200 |
|
compress_factor = 0.1 |
|
punish_steps = 200 |
|
punish_factor = 0.5 |
|
|