#This settings file can be loaded back to Latent Majesty Diffusion. If you like your setting consider sharing it to the settings library at https://github.com/multimodalart/MajestyDiffusion [model] latent_diffusion_model = finetuned [clip_list] perceptors = ['[clip - mlfoundations - ViT-B-16--openai]', '[clip - mlfoundations - RN50x16--openai]', '[clip - mlfoundations - ViT-L-14--laion400m_e32]', '[clip - mlfoundations - ViT-B-16-plus-240--laion400m_e32]', '[clip - mlfoundations - ViT-B-32--laion2b_e16]'] [basic_settings] #Perceptor things width = 256 height = 256 latent_diffusion_guidance_scale = 10 clip_guidance_scale = 135000 aesthetic_loss_scale = 400 augment_cuts=True #Init image settings starting_timestep = 0.02 init_scale = 1000 init_brightness = 0.0 [advanced_settings] #Add CLIP Guidance and all the flavors or just run normal Latent Diffusion use_cond_fn = True #Custom schedules for cuts. Check out the schedules documentation here custom_schedule_setting = [[30, 1000, 8], 'gfpgan:1.5', 'scale:.9', [20, 200, 8], 'gfpgan:1', 'scale:.9', [50, 220, 2], 'gfpgan:1'] #Cut settings clamp_index = [2.4, 2.1] cut_overview = [8]*500 + [4]*500 cut_innercut = [0]*500 + [4]*500 cut_blur_n = [0]*1300 cut_blur_kernel = 3 cut_ic_pow = 5.6 cut_icgray_p = [0.1]*300 + [0]*1000 cutn_batches = 1 range_index = [0]*200 + [50000.0]*400 + [0]*1000 active_function = "softsign" ths_method= "clamp" tv_scales = [150]*1 + [0]*3 #If you uncomment this line you can schedule the CLIP guidance across the steps. Otherwise the clip_guidance_scale will be used clip_guidance_schedule = [16000]*1000 #Apply symmetric loss (force simmetry to your results) symmetric_loss_scale = 0 #Latent Diffusion Advanced Settings #Use when latent upscale to correct satuation problem scale_div = 1 #Magnify grad before clamping by how many times opt_mag_mul = 20 opt_ddim_eta = 1.3 opt_eta_end = 1.1 opt_temperature = 0.98 #Grad advanced settings grad_center = False #Lower value result in more coherent and detailed result, higher value makes it focus on more dominent concept grad_scale=0.25 score_modifier = True threshold_percentile = 0.85 threshold = 1 var_index = [2]*300 + [0]*700 var_range = 0.5 mean_index = [0]*1000 mean_range = 0.75 #Init image advanced settings init_rotate=False mask_rotate=False init_magnitude = 0.18215 #More settings RGB_min = -0.95 RGB_max = 0.95 #How to pad the image with cut_overview padargs = {'mode': 'constant', 'value': -1} flip_aug=False #Experimental aesthetic embeddings, work only with OpenAI ViT-B/32 and ViT-L/14 experimental_aesthetic_embeddings = True #How much you want this to influence your result experimental_aesthetic_embeddings_weight = 0.3 #9 are good aesthetic embeddings, 0 are bad ones experimental_aesthetic_embeddings_score = 8 # For fun dont change except if you really know what your are doing grad_blur = False compress_steps = 200 compress_factor = 0.1 punish_steps = 200 punish_factor = 0.5