Datasets:
File size: 15,328 Bytes
7587a18 c5b40df 1ebcf9e c5b40df 7bef39f 8664327 5290f76 fe75b63 61e70d6 38a9cc8 90bf22a a5396e4 7587a18 ba0e0d8 2291fc1 4a6f314 2291fc1 5b1ff9d 2291fc1 5b1ff9d 2291fc1 5b1ff9d 2291fc1 5b1ff9d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 |
---
annotations_creators:
- crowdsourced
license: cc-by-nc-sa-4.0
size_categories:
- 10K<n<100K
task_categories:
- image-classification
- image-feature-extraction
pretty_name: Galaxy Zoo CANDELS
arxiv: 2404.02973
tags:
- galaxy zoo
- physics
- astronomy
- galaxies
- citizen science
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: test
path: data/test-*
- config_name: tiny
data_files:
- split: train
path: tiny/train-*
- split: test
path: tiny/test-*
dataset_info:
config_name: tiny
features:
- name: image
dtype: image
- name: id_str
dtype: string
- name: dataset_name
dtype: string
- name: ra
dtype: float64
- name: dec
dtype: float64
- name: smooth-or-featured-candels_smooth
dtype: int32
- name: smooth-or-featured-candels_smooth_fraction
dtype: float32
- name: smooth-or-featured-candels_total-votes
dtype: int32
- name: smooth-or-featured-candels_features
dtype: int32
- name: smooth-or-featured-candels_features_fraction
dtype: float32
- name: smooth-or-featured-candels_artifact
dtype: int32
- name: smooth-or-featured-candels_artifact_fraction
dtype: float32
- name: how-rounded-candels_completely
dtype: int32
- name: how-rounded-candels_completely_fraction
dtype: float32
- name: how-rounded-candels_total-votes
dtype: int32
- name: how-rounded-candels_in-between
dtype: int32
- name: how-rounded-candels_in-between_fraction
dtype: float32
- name: how-rounded-candels_cigar-shaped
dtype: int32
- name: how-rounded-candels_cigar-shaped_fraction
dtype: float32
- name: clumpy-appearance-candels_yes
dtype: int32
- name: clumpy-appearance-candels_yes_fraction
dtype: float32
- name: clumpy-appearance-candels_total-votes
dtype: int32
- name: clumpy-appearance-candels_no
dtype: int32
- name: clumpy-appearance-candels_no_fraction
dtype: float32
- name: disk-edge-on-candels_yes
dtype: int32
- name: disk-edge-on-candels_yes_fraction
dtype: float32
- name: disk-edge-on-candels_total-votes
dtype: int32
- name: disk-edge-on-candels_no
dtype: int32
- name: disk-edge-on-candels_no_fraction
dtype: float32
- name: edge-on-bulge-candels_yes
dtype: int32
- name: edge-on-bulge-candels_yes_fraction
dtype: float32
- name: edge-on-bulge-candels_total-votes
dtype: int32
- name: edge-on-bulge-candels_no
dtype: int32
- name: edge-on-bulge-candels_no_fraction
dtype: float32
- name: bar-candels_yes
dtype: int32
- name: bar-candels_yes_fraction
dtype: float32
- name: bar-candels_total-votes
dtype: int32
- name: bar-candels_no
dtype: int32
- name: bar-candels_no_fraction
dtype: float32
- name: has-spiral-arms-candels_yes
dtype: int32
- name: has-spiral-arms-candels_yes_fraction
dtype: float32
- name: has-spiral-arms-candels_total-votes
dtype: int32
- name: has-spiral-arms-candels_no
dtype: int32
- name: has-spiral-arms-candels_no_fraction
dtype: float32
- name: spiral-winding-candels_tight
dtype: int32
- name: spiral-winding-candels_tight_fraction
dtype: float32
- name: spiral-winding-candels_total-votes
dtype: int32
- name: spiral-winding-candels_medium
dtype: int32
- name: spiral-winding-candels_medium_fraction
dtype: float32
- name: spiral-winding-candels_loose
dtype: int32
- name: spiral-winding-candels_loose_fraction
dtype: float32
- name: spiral-arm-count-candels_1
dtype: int32
- name: spiral-arm-count-candels_1_fraction
dtype: float32
- name: spiral-arm-count-candels_total-votes
dtype: int32
- name: spiral-arm-count-candels_2
dtype: int32
- name: spiral-arm-count-candels_2_fraction
dtype: float32
- name: spiral-arm-count-candels_3
dtype: int32
- name: spiral-arm-count-candels_3_fraction
dtype: float32
- name: spiral-arm-count-candels_4
dtype: int32
- name: spiral-arm-count-candels_4_fraction
dtype: float32
- name: spiral-arm-count-candels_5-plus
dtype: int32
- name: spiral-arm-count-candels_5-plus_fraction
dtype: float32
- name: spiral-arm-count-candels_cant-tell
dtype: int32
- name: spiral-arm-count-candels_cant-tell_fraction
dtype: float32
- name: bulge-size-candels_none
dtype: int32
- name: bulge-size-candels_none_fraction
dtype: float32
- name: bulge-size-candels_total-votes
dtype: int32
- name: bulge-size-candels_obvious
dtype: int32
- name: bulge-size-candels_obvious_fraction
dtype: float32
- name: bulge-size-candels_dominant
dtype: int32
- name: bulge-size-candels_dominant_fraction
dtype: float32
- name: merging-candels_merger
dtype: int32
- name: merging-candels_merger_fraction
dtype: float32
- name: merging-candels_total-votes
dtype: int32
- name: merging-candels_tidal-debris
dtype: int32
- name: merging-candels_tidal-debris_fraction
dtype: float32
- name: merging-candels_both
dtype: int32
- name: merging-candels_both_fraction
dtype: float32
- name: merging-candels_neither
dtype: int32
- name: merging-candels_neither_fraction
dtype: float32
- name: summary
dtype: string
splits:
- name: train
num_bytes: 50923554.0
num_examples: 384
- name: test
num_bytes: 11408334.0
num_examples: 96
download_size: 62397933
dataset_size: 62331888.0
---
# GZ Campaign Datasets
## Dataset Summary
[Galaxy Zoo](www.galaxyzoo.org) volunteers label telescope images of galaxies according to their visible features: spiral arms, galaxy-galaxy collisions, and so on.
These datasets share the galaxy images and volunteer labels in a machine-learning-friendly format. We use these datasets to train [our foundation models](https://arxiv.org/abs/2404.02973). We hope they'll help you too.
- **Curated by:** [Mike Walmsley](https://walmsley.dev/)
- **License:** [cc-by-nc-sa-4.0](https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en). We specifically require **all models trained on these datasets to be released as source code by publication**.
## Downloading
Install the Datasets library
pip install datasets
and then log in to your HuggingFace account
huggingface-cli login
All unpublished* datasets are temporarily "gated" i.e. you must have requested and been approved for access. Galaxy Zoo team members should go to https://huggingface.co/mwalmsley/datasets/gz_candels, click "request access", ping Mike, then wait for approval.
Gating will be removed on publication.
*Currently: the `gz_h2o` and `gz_ukidss` datasets
## Usage
```python
from datasets import load_dataset
# . split='train' picks which split to load
dataset = load_dataset(
'mwalmsley/gz_candels', # each dataset has a random fixed train/test split
split='train'
# some datasets also allow name=subset (e.g. name="tiny" for gz_evo). see the viewer for subset options
)
dataset.set_format('torch') # your framework of choice e.g. numpy, tensorflow, jax, etc
print(dataset_name, dataset[0]['image'].shape)
```
Then use the `dataset` object as with any other HuggingFace dataset, e.g.,
```python
from torch.utils.data import DataLoader
dataloader = DataLoader(ds, batch_size=4, num_workers=1)
for batch in dataloader:
print(batch.keys())
# the image key, plus a key counting the volunteer votes for each answer
# (e.g. smooth-or-featured-gz2_smooth)
print(batch['image'].shape)
break
```
You may find these HuggingFace docs useful:
- [PyTorch loading options](https://huggingface.co/docs/datasets/en/use_with_pytorch#data-loading).
- [Applying transforms/augmentations](https://huggingface.co/docs/datasets/en/image_process#apply-transforms).
- [Frameworks supported](https://huggingface.co/docs/datasets/v2.19.0/en/package_reference/main_classes#datasets.Dataset.set_format) by `set_format`.
## Dataset Structure
Each dataset is structured like:
```json
{
'image': ..., # image of a galaxy
'smooth-or-featured-[campaign]_smooth': 4,
'smooth-or-featured-[campaign]_featured-or-disk': 12,
... # and so on for many questions and answers
}
```
Images are loaded according to your `set_format` choice above. For example, ```set_format("torch")``` gives a (3, 424, 424) CHW `Torch.Tensor`.
The other keys are formatted like `[question]_[answer]`, where `question` is what the volunteers were asked (e.g. "smooth or featured?" and `answer` is the choice selected (e.g. "smooth"). **The values are the count of volunteers who selected each answer.**
`question` is appended with a string noting in which Galaxy Zoo campaign this question was asked e.g. `smooth-or-featured-gz2`. For most datasets, all questions were asked during the same campaign. For GZ DESI, there are three campaigns (`dr12`, `dr5`, and `dr8`) with very similar questions.
GZ Evo combines all the published datasets (currently GZ2, GZ DESI, GZ CANDELS, GZ Hubble, and GZ UKIDSS) into a single dataset aimed at multi-task learning. This is helpful for [building models that adapt to new tasks and new telescopes]((https://arxiv.org/abs/2404.02973)).
(we will shortly add keys for the astronomical identifiers i.e. the sky coordinates and telescope source unique ids)
## Key Limitations
Because the volunteers are answering a decision tree, the questions asked depend on the previous answers, and so each galaxy and each question can have very different total numbers of votes. This interferes with typical metrics that use aggregated labels (e.g. classification of the most voted, regression on the mean vote fraction, etc.) because we have different levels of confidence in the aggregated labels for each galaxy. We suggest a custom loss to handle this. Please see the Datasets and Benchmarks paper for more details (under review, sorry).
All labels are imperfect. The vote counts may not always reflect the true appearance of each galaxy. Additionally,
the true appearance of each galaxy may be uncertain - even to expert astronomers.
We therefore caution against over-interpreting small changes in performance to indicate a method is "superior". **These datasets should not be used as a precise performance benchmark.**
## Citation Information
The machine-learning friendly versions of each dataset are described in a recently-submitted paper. Citation information will be added if accepted.
For each specific dataset you use, please also cite the original Galaxy Zoo data release paper (listed below) and the telescope description paper (cited therein).
### Galaxy Zoo 2
@article{10.1093/mnras/stt1458,
author = {Willett, Kyle W. and Lintott, Chris J. and Bamford, Steven P. and Masters, Karen L. and Simmons, Brooke D. and Casteels, Kevin R. V. and Edmondson, Edward M. and Fortson, Lucy F. and Kaviraj, Sugata and Keel, William C. and Melvin, Thomas and Nichol, Robert C. and Raddick, M. Jordan and Schawinski, Kevin and Simpson, Robert J. and Skibba, Ramin A. and Smith, Arfon M. and Thomas, Daniel},
title = "{Galaxy Zoo 2: detailed morphological classifications for 304 122 galaxies from the Sloan Digital Sky Survey}",
journal = {Monthly Notices of the Royal Astronomical Society},
volume = {435},
number = {4},
pages = {2835-2860},
year = {2013},
month = {09},
issn = {0035-8711},
doi = {10.1093/mnras/stt1458},
}
### Galaxy Zoo Hubble
@article{2017MNRAS.464.4176W,
author = {Willett, Kyle W. and Galloway, Melanie A. and Bamford, Steven P. and Lintott, Chris J. and Masters, Karen L. and Scarlata, Claudia and Simmons, B.~D. and Beck, Melanie and {Cardamone}, Carolin N. and Cheung, Edmond and Edmondson, Edward M. and Fortson, Lucy F. and Griffith, Roger L. and H{\"a}u{\ss}ler, Boris and Han, Anna and Hart, Ross and Melvin, Thomas and Parrish, Michael and Schawinski, Kevin and Smethurst, R.~J. and {Smith}, Arfon M.},
title = "{Galaxy Zoo: morphological classifications for 120 000 galaxies in HST legacy imaging}",
journal = {Monthly Notices of the Royal Astronomical Society},
year = 2017,
month = feb,
volume = {464},
number = {4},
pages = {4176-4203},
doi = {10.1093/mnras/stw2568}
}
### Galaxy Zoo CANDELS
@article{10.1093/mnras/stw2587,
author = {Simmons, B. D. and Lintott, Chris and Willett, Kyle W. and Masters, Karen L. and Kartaltepe, Jeyhan S. and Häußler, Boris and Kaviraj, Sugata and Krawczyk, Coleman and Kruk, S. J. and McIntosh, Daniel H. and Smethurst, R. J. and Nichol, Robert C. and Scarlata, Claudia and Schawinski, Kevin and Conselice, Christopher J. and Almaini, Omar and Ferguson, Henry C. and Fortson, Lucy and Hartley, William and Kocevski, Dale and Koekemoer, Anton M. and Mortlock, Alice and Newman, Jeffrey A. and Bamford, Steven P. and Grogin, N. A. and Lucas, Ray A. and Hathi, Nimish P. and McGrath, Elizabeth and Peth, Michael and Pforr, Janine and Rizer, Zachary and Wuyts, Stijn and Barro, Guillermo and Bell, Eric F. and Castellano, Marco and Dahlen, Tomas and Dekel, Avishai and Ownsworth, Jamie and Faber, Sandra M. and Finkelstein, Steven L. and Fontana, Adriano and Galametz, Audrey and Grützbauch, Ruth and Koo, David and Lotz, Jennifer and Mobasher, Bahram and Mozena, Mark and Salvato, Mara and Wiklind, Tommy},
title = "{Galaxy Zoo: quantitative visual morphological classifications for 48 000 galaxies from CANDELS★}",
journal = {Monthly Notices of the Royal Astronomical Society},
volume = {464},
number = {4},
pages = {4420-4447},
year = {2016},
month = {10},
doi = {10.1093/mnras/stw2587}
}
### Galaxy Zoo DESI
(two citations due to being released over two papers)
@article{10.1093/mnras/stab2093,
author = {Walmsley, Mike and Lintott, Chris and Géron, Tobias and Kruk, Sandor and Krawczyk, Coleman and Willett, Kyle W and Bamford, Steven and Kelvin, Lee S and Fortson, Lucy and Gal, Yarin and Keel, William and Masters, Karen L and Mehta, Vihang and Simmons, Brooke D and Smethurst, Rebecca and Smith, Lewis and Baeten, Elisabeth M and Macmillan, Christine},
title = "{Galaxy Zoo DECaLS: Detailed visual morphology measurements from volunteers and deep learning for 314 000 galaxies}",
journal = {Monthly Notices of the Royal Astronomical Society},
volume = {509},
number = {3},
pages = {3966-3988},
year = {2021},
month = {09},
issn = {0035-8711},
doi = {10.1093/mnras/stab2093}
}
@article{10.1093/mnras/stad2919,
author = {Walmsley, Mike and Géron, Tobias and Kruk, Sandor and Scaife, Anna M M and Lintott, Chris and Masters, Karen L and Dawson, James M and Dickinson, Hugh and Fortson, Lucy and Garland, Izzy L and Mantha, Kameswara and O’Ryan, David and Popp, Jürgen and Simmons, Brooke and Baeten, Elisabeth M and Macmillan, Christine},
title = "{Galaxy Zoo DESI: Detailed morphology measurements for 8.7M galaxies in the DESI Legacy Imaging Surveys}",
journal = {Monthly Notices of the Royal Astronomical Society},
volume = {526},
number = {3},
pages = {4768-4786},
year = {2023},
month = {09},
issn = {0035-8711},
doi = {10.1093/mnras/stad2919}
}
### Galaxy Zoo UKIDSS
Not yet published.
### Galaxy Zoo Cosmic Dawn (a.k.a. H2O)
Not yet published. |