mwalmsley commited on
Commit
292fffb
1 Parent(s): 061191e

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +200 -80
README.md CHANGED
@@ -1,82 +1,202 @@
1
  ---
2
- dataset_info:
3
- features:
4
- - name: image
5
- dtype: image
6
- - name: smooth-or-featured-ukidss_smooth
7
- dtype: int32
8
- - name: smooth-or-featured-ukidss_featured-or-disk
9
- dtype: int32
10
- - name: smooth-or-featured-ukidss_artifact
11
- dtype: int32
12
- - name: disk-edge-on-ukidss_yes
13
- dtype: int32
14
- - name: disk-edge-on-ukidss_no
15
- dtype: int32
16
- - name: has-spiral-arms-ukidss_yes
17
- dtype: int32
18
- - name: has-spiral-arms-ukidss_no
19
- dtype: int32
20
- - name: bar-ukidss_yes
21
- dtype: int32
22
- - name: bar-ukidss_no
23
- dtype: int32
24
- - name: bulge-size-ukidss_dominant
25
- dtype: int32
26
- - name: bulge-size-ukidss_obvious
27
- dtype: int32
28
- - name: bulge-size-ukidss_just-noticeable
29
- dtype: int32
30
- - name: bulge-size-ukidss_no
31
- dtype: int32
32
- - name: something-odd-ukidss_yes
33
- dtype: int32
34
- - name: something-odd-ukidss_no
35
- dtype: int32
36
- - name: how-rounded-ukidss_round
37
- dtype: int32
38
- - name: how-rounded-ukidss_in-between
39
- dtype: int32
40
- - name: how-rounded-ukidss_cigar
41
- dtype: int32
42
- - name: bulge-shape-ukidss_round
43
- dtype: int32
44
- - name: bulge-shape-ukidss_boxy
45
- dtype: int32
46
- - name: bulge-shape-ukidss_no-bulge
47
- dtype: int32
48
- - name: spiral-winding-ukidss_tight
49
- dtype: int32
50
- - name: spiral-winding-ukidss_medium
51
- dtype: int32
52
- - name: spiral-winding-ukidss_loose
53
- dtype: int32
54
- - name: spiral-arm-count-ukidss_1
55
- dtype: int32
56
- - name: spiral-arm-count-ukidss_2
57
- dtype: int32
58
- - name: spiral-arm-count-ukidss_3
59
- dtype: int32
60
- - name: spiral-arm-count-ukidss_4
61
- dtype: int32
62
- - name: spiral-arm-count-ukidss_more-than-4
63
- dtype: int32
64
- - name: spiral-arm-count-ukidss_cant-tell
65
- dtype: int32
66
- splits:
67
- - name: train
68
- num_bytes: 6318497676.188
69
- num_examples: 56676
70
- - name: test
71
- num_bytes: 1579383816.008
72
- num_examples: 14169
73
- download_size: 7899786422
74
- dataset_size: 7897881492.195999
75
- configs:
76
- - config_name: default
77
- data_files:
78
- - split: train
79
- path: data/train-*
80
- - split: test
81
- path: data/test-*
82
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ annotations_creators:
3
+ - crowdsourced
4
+ license: cc-by-nc-sa-4.0
5
+ size_categories:
6
+ - 10K<n<100K
7
+ task_categories:
8
+ - image-classification
9
+ - image-feature-extraction
10
+ pretty_name: Galaxy Zoo UKIDSS
11
+ arxiv: 2404.02973
12
+ tags:
13
+ - galaxy zoo
14
+ - physics
15
+ - astronomy
16
+ - galaxies
17
+ - citizen science
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18
  ---
19
+
20
+ # GZ Campaign Datasets
21
+
22
+ ## Dataset Summary
23
+
24
+ [Galaxy Zoo](www.galaxyzoo.org) volunteers label telescope images of galaxies according to their visible features: spiral arms, galaxy-galaxy collisions, and so on.
25
+ These datasets share the galaxy images and volunteer labels in a machine-learning-friendly format. We use these datasets to train [our foundation models](https://arxiv.org/abs/2404.02973). We hope they'll help you too.
26
+
27
+ - **Curated by:** [Mike Walmsley](https://walmsley.dev/)
28
+ - **License:** [cc-by-nc-sa-4.0](https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en). We specifically require **all models trained on these datasets to be released as source code by publication**.
29
+
30
+ ## Downloading
31
+
32
+ Install the Datasets library
33
+
34
+ pip install datasets
35
+
36
+ and then log in to your HuggingFace account
37
+
38
+ huggingface-cli login
39
+
40
+ All unpublished* datasets are temporarily "gated" i.e. you must have requested and been approved for access. Galaxy Zoo team members should go to https://huggingface.co/mwalmsley/datasets/gz_ukidss, click "request access", ping Mike, then wait for approval.
41
+ Gating will be removed on publication.
42
+
43
+ *Currently: the `gz_h2o` and `gz_ukidss` datasets
44
+
45
+ ## Usage
46
+
47
+ ```python
48
+ from datasets import load_dataset
49
+
50
+ # . split='train' picks which split to load
51
+ dataset = load_dataset(
52
+ 'mwalmsley/gz_ukidss', # each dataset has a random fixed train/test split
53
+ split='train'
54
+ # some datasets also allow name=subset (e.g. name="tiny" for gz_evo). see the viewer for subset options
55
+ )
56
+ dataset.set_format('torch') # your framework of choice e.g. numpy, tensorflow, jax, etc
57
+ print(dataset_name, dataset[0]['image'].shape)
58
+ ```
59
+
60
+ Then use the `dataset` object as with any other HuggingFace dataset, e.g.,
61
+
62
+ ```python
63
+ from torch.utils.data import DataLoader
64
+
65
+ dataloader = DataLoader(ds, batch_size=4, num_workers=1)
66
+ for batch in dataloader:
67
+ print(batch.keys())
68
+ # the image key, plus a key counting the volunteer votes for each answer
69
+ # (e.g. smooth-or-featured-gz2_smooth)
70
+ print(batch['image'].shape)
71
+ break
72
+ ```
73
+
74
+ You may find these HuggingFace docs useful:
75
+ - [PyTorch loading options](https://huggingface.co/docs/datasets/en/use_with_pytorch#data-loading).
76
+ - [Applying transforms/augmentations](https://huggingface.co/docs/datasets/en/image_process#apply-transforms).
77
+ - [Frameworks supported](https://huggingface.co/docs/datasets/v2.19.0/en/package_reference/main_classes#datasets.Dataset.set_format) by `set_format`.
78
+
79
+
80
+ ## Dataset Structure
81
+
82
+ Each dataset is structured like:
83
+
84
+ ```json
85
+ {
86
+ 'image': ..., # image of a galaxy
87
+ 'smooth-or-featured-[campaign]_smooth': 4,
88
+ 'smooth-or-featured-[campaign]_featured-or-disk': 12,
89
+ ... # and so on for many questions and answers
90
+ }
91
+ ```
92
+
93
+ Images are loaded according to your `set_format` choice above. For example, ```set_format("torch")``` gives a (3, 424, 424) CHW `Torch.Tensor`.
94
+
95
+ The other keys are formatted like `[question]_[answer]`, where `question` is what the volunteers were asked (e.g. "smooth or featured?" and `answer` is the choice selected (e.g. "smooth"). **The values are the count of volunteers who selected each answer.**
96
+
97
+ `question` is appended with a string noting in which Galaxy Zoo campaign this question was asked e.g. `smooth-or-featured-gz2`. For most datasets, all questions were asked during the same campaign. For GZ DESI, there are three campaigns (`dr12`, `dr5`, and `dr8`) with very similar questions.
98
+
99
+ GZ Evo combines all the published datasets (currently GZ2, GZ DESI, GZ CANDELS, GZ Hubble, and GZ UKIDSS) into a single dataset aimed at multi-task learning. This is helpful for [building models that adapt to new tasks and new telescopes]((https://arxiv.org/abs/2404.02973)).
100
+
101
+ (we will shortly add keys for the astronomical identifiers i.e. the sky coordinates and telescope source unique ids)
102
+
103
+
104
+ ## Key Limitations
105
+
106
+ Because the volunteers are answering a decision tree, the questions asked depend on the previous answers, and so each galaxy and each question can have very different total numbers of votes. This interferes with typical metrics that use aggregated labels (e.g. classification of the most voted, regression on the mean vote fraction, etc.) because we have different levels of confidence in the aggregated labels for each galaxy. We suggest a custom loss to handle this. Please see the Datasets and Benchmarks paper for more details (under review, sorry).
107
+
108
+
109
+ All labels are imperfect. The vote counts may not always reflect the true appearance of each galaxy. Additionally,
110
+ the true appearance of each galaxy may be uncertain - even to expert astronomers.
111
+ We therefore caution against over-interpreting small changes in performance to indicate a method is "superior". **These datasets should not be used as a precise performance benchmark.**
112
+
113
+
114
+ ## Citation Information
115
+
116
+ The machine-learning friendly versions of each dataset are described in a recently-submitted paper. Citation information will be added if accepted.
117
+
118
+ For each specific dataset you use, please also cite the original Galaxy Zoo data release paper (listed below) and the telescope description paper (cited therein).
119
+
120
+ ### Galaxy Zoo 2
121
+
122
+ @article{10.1093/mnras/stt1458,
123
+ author = {Willett, Kyle W. and Lintott, Chris J. and Bamford, Steven P. and Masters, Karen L. and Simmons, Brooke D. and Casteels, Kevin R. V. and Edmondson, Edward M. and Fortson, Lucy F. and Kaviraj, Sugata and Keel, William C. and Melvin, Thomas and Nichol, Robert C. and Raddick, M. Jordan and Schawinski, Kevin and Simpson, Robert J. and Skibba, Ramin A. and Smith, Arfon M. and Thomas, Daniel},
124
+ title = "{Galaxy Zoo 2: detailed morphological classifications for 304 122 galaxies from the Sloan Digital Sky Survey}",
125
+ journal = {Monthly Notices of the Royal Astronomical Society},
126
+ volume = {435},
127
+ number = {4},
128
+ pages = {2835-2860},
129
+ year = {2013},
130
+ month = {09},
131
+ issn = {0035-8711},
132
+ doi = {10.1093/mnras/stt1458},
133
+ }
134
+
135
+ ### Galaxy Zoo Hubble
136
+
137
+ @article{2017MNRAS.464.4176W,
138
+ author = {Willett, Kyle W. and Galloway, Melanie A. and Bamford, Steven P. and Lintott, Chris J. and Masters, Karen L. and Scarlata, Claudia and Simmons, B.~D. and Beck, Melanie and {Cardamone}, Carolin N. and Cheung, Edmond and Edmondson, Edward M. and Fortson, Lucy F. and Griffith, Roger L. and H{\"a}u{\ss}ler, Boris and Han, Anna and Hart, Ross and Melvin, Thomas and Parrish, Michael and Schawinski, Kevin and Smethurst, R.~J. and {Smith}, Arfon M.},
139
+ title = "{Galaxy Zoo: morphological classifications for 120 000 galaxies in HST legacy imaging}",
140
+ journal = {Monthly Notices of the Royal Astronomical Society},
141
+ year = 2017,
142
+ month = feb,
143
+ volume = {464},
144
+ number = {4},
145
+ pages = {4176-4203},
146
+ doi = {10.1093/mnras/stw2568}
147
+ }
148
+
149
+ ### Galaxy Zoo CANDELS
150
+
151
+ @article{10.1093/mnras/stw2587,
152
+ author = {Simmons, B. D. and Lintott, Chris and Willett, Kyle W. and Masters, Karen L. and Kartaltepe, Jeyhan S. and Häußler, Boris and Kaviraj, Sugata and Krawczyk, Coleman and Kruk, S. J. and McIntosh, Daniel H. and Smethurst, R. J. and Nichol, Robert C. and Scarlata, Claudia and Schawinski, Kevin and Conselice, Christopher J. and Almaini, Omar and Ferguson, Henry C. and Fortson, Lucy and Hartley, William and Kocevski, Dale and Koekemoer, Anton M. and Mortlock, Alice and Newman, Jeffrey A. and Bamford, Steven P. and Grogin, N. A. and Lucas, Ray A. and Hathi, Nimish P. and McGrath, Elizabeth and Peth, Michael and Pforr, Janine and Rizer, Zachary and Wuyts, Stijn and Barro, Guillermo and Bell, Eric F. and Castellano, Marco and Dahlen, Tomas and Dekel, Avishai and Ownsworth, Jamie and Faber, Sandra M. and Finkelstein, Steven L. and Fontana, Adriano and Galametz, Audrey and Grützbauch, Ruth and Koo, David and Lotz, Jennifer and Mobasher, Bahram and Mozena, Mark and Salvato, Mara and Wiklind, Tommy},
153
+ title = "{Galaxy Zoo: quantitative visual morphological classifications for 48 000 galaxies from CANDELS★}",
154
+ journal = {Monthly Notices of the Royal Astronomical Society},
155
+ volume = {464},
156
+ number = {4},
157
+ pages = {4420-4447},
158
+ year = {2016},
159
+ month = {10},
160
+ doi = {10.1093/mnras/stw2587}
161
+ }
162
+
163
+ ### Galaxy Zoo DESI
164
+
165
+ (two citations due to being released over two papers)
166
+
167
+ @article{10.1093/mnras/stab2093,
168
+ author = {Walmsley, Mike and Lintott, Chris and Géron, Tobias and Kruk, Sandor and Krawczyk, Coleman and Willett, Kyle W and Bamford, Steven and Kelvin, Lee S and Fortson, Lucy and Gal, Yarin and Keel, William and Masters, Karen L and Mehta, Vihang and Simmons, Brooke D and Smethurst, Rebecca and Smith, Lewis and Baeten, Elisabeth M and Macmillan, Christine},
169
+ title = "{Galaxy Zoo DECaLS: Detailed visual morphology measurements from volunteers and deep learning for 314 000 galaxies}",
170
+ journal = {Monthly Notices of the Royal Astronomical Society},
171
+ volume = {509},
172
+ number = {3},
173
+ pages = {3966-3988},
174
+ year = {2021},
175
+ month = {09},
176
+ issn = {0035-8711},
177
+ doi = {10.1093/mnras/stab2093}
178
+ }
179
+
180
+
181
+ @article{10.1093/mnras/stad2919,
182
+ author = {Walmsley, Mike and Géron, Tobias and Kruk, Sandor and Scaife, Anna M M and Lintott, Chris and Masters, Karen L and Dawson, James M and Dickinson, Hugh and Fortson, Lucy and Garland, Izzy L and Mantha, Kameswara and O’Ryan, David and Popp, Jürgen and Simmons, Brooke and Baeten, Elisabeth M and Macmillan, Christine},
183
+ title = "{Galaxy Zoo DESI: Detailed morphology measurements for 8.7M galaxies in the DESI Legacy Imaging Surveys}",
184
+ journal = {Monthly Notices of the Royal Astronomical Society},
185
+ volume = {526},
186
+ number = {3},
187
+ pages = {4768-4786},
188
+ year = {2023},
189
+ month = {09},
190
+ issn = {0035-8711},
191
+ doi = {10.1093/mnras/stad2919}
192
+ }
193
+
194
+
195
+ ### Galaxy Zoo UKIDSS
196
+
197
+ Not yet published.
198
+
199
+ ### Galaxy Zoo Cosmic Dawn (a.k.a. H2O)
200
+
201
+
202
+ Not yet published.