nanote commited on
Commit
8880178
1 Parent(s): 4114f7d

Upload 12 files

Browse files
Figure_3.png ADDED

Git LFS Details

  • SHA256: 35934968c7046b7b0fae305183d6788331030157f64919f60518069d8505e995
  • Pointer size: 130 Bytes
  • Size of remote file: 51.2 kB
Figure_4.png ADDED

Git LFS Details

  • SHA256: af4e2cfc1417dc74ce07e4f2bc50f495d77d892bf407c0b7c51c33532df3bafa
  • Pointer size: 131 Bytes
  • Size of remote file: 168 kB
Figure_5.png ADDED

Git LFS Details

  • SHA256: 64fb52c84bec37da74801f31af5a2a597232b24850233b3fbf85d0d70372e2fd
  • Pointer size: 131 Bytes
  • Size of remote file: 224 kB
Figure_6.png ADDED

Git LFS Details

  • SHA256: 03283703a0f0bc60664389bc294ffdd0330ff9f5a30f734021ed756b0eb70887
  • Pointer size: 131 Bytes
  • Size of remote file: 151 kB
LICENSE ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ MIT License
2
+
3
+ Copyright (c) 2024 Nancy Otero
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE.
create_dataset_files.py ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # assume we are starting with data.json
2
+ # then we create several files per example:
3
+ # name format as {mae}_{example_num}_question|incorrect_answer|correct_answer
4
+
5
+ import pandas as pd
6
+ from tqdm import tqdm
7
+
8
+ df = pd.read_json('data/data.json')
9
+
10
+ for i, row in tqdm(df.iterrows()):
11
+ mae = row['Misconception ID']
12
+ num = row['Example Number']
13
+ correct_answer = row['Correct Answer']
14
+ incorrect_answer = row['Incorrect Answer']
15
+ question = row['Question']
16
+ with open(f'data/txt_files/{mae}_{num}_correct_answer.txt', 'a') as file:
17
+ file.write(correct_answer)
18
+ with open(f'data/txt_files/{mae}_{num}_incorrect_answer.txt', 'a') as file:
19
+ file.write(incorrect_answer)
20
+ with open(f'data/txt_files/{mae}_{num}_question.txt', 'a') as file:
21
+ file.write(question)
create_exp1_outputs.py ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import openai
2
+ import pandas as pd
3
+ import pandas as pd
4
+ import json
5
+ import urllib
6
+ import math
7
+ import time
8
+ import random
9
+ import re
10
+ from tqdm import tqdm
11
+ from io import StringIO
12
+ import exp_lib
13
+
14
+ def experiment_1_trial(data_df, model_name):
15
+ x = data_df.sample(frac=1)
16
+ train_df = x.drop_duplicates('Misconception ID')
17
+ test_df = x.iloc[::-1].drop_duplicates('Misconception ID')
18
+ test_df = test_df.reset_index()
19
+ prompt = exp_lib.generate_prompt_test_batch(train_df.to_dict(orient='records'), test_df.to_dict(orient='records'))
20
+ response = exp_lib.get_gpt4_diagnosis(model_name, prompt)
21
+ response_df = pd.read_csv(StringIO(response), header=None, names=["test_example", "diagnosis"])
22
+ test_df["Predicted Diagnosis"] = response_df["diagnosis"].str.strip()
23
+ test_df["Model"] = model_name
24
+ return test_df[['Misconception ID', 'Example Number', 'Topic', 'Predicted Diagnosis', 'Model']]
25
+
26
+
27
+ def experiment_1(input_file_path, model_name, num_iterations, output_file_path):
28
+ data_df = pd.read_json(input_file_path)
29
+ experiment_1_results_list = []
30
+ for i in tqdm(range(num_iterations)):
31
+ try:
32
+ trial_result = experiment_1_trial(data_df, model_name)
33
+ trial_result['Trial'] = i
34
+ experiment_1_results_list.append(trial_result)
35
+ except Exception as e:
36
+ print(e)
37
+ experiment_1_results_df = pd.concat(experiment_1_results_list)
38
+ experiment_1_results_df['Correct'] = (experiment_1_results_df['Misconception ID'] == experiment_1_results_df['Predicted Diagnosis'])
39
+ experiment_1_results_df.to_csv(output_file_path)
40
+
41
+
42
+ if __name__ == '__main__':
43
+ experiment_name = 'experiment_1'
44
+ input_file_path = 'data/data.json'
45
+ model_name = 'gpt-4-turbo'
46
+ num_iterations = 100
47
+ output_file_path = f'outputs/{experiment_name}_{model_name}_{num_iterations}iters.csv'
48
+
49
+ experiment_1(
50
+ input_file_path,
51
+ model_name,
52
+ num_iterations,
53
+ output_file_path
54
+ )
55
+
create_exp1_results.py ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pandas as pd
2
+
3
+ output_file_path = 'outputs/experiment_1_gpt-4-turbo_100iters.csv'
4
+ outputs_df = pd.read_csv(output_file_path)
5
+
6
+ print(outputs_df.head())
7
+
8
+
9
+
10
+ def calculate_precision_recall(df):
11
+ # Calculate precision and recall
12
+ true_positives = df['Correct'].sum()
13
+ total_predicted = len(df)
14
+ total_actual = df['Misconception ID'].nunique()
15
+
16
+ precision = true_positives / total_predicted if total_predicted else 0
17
+ recall = true_positives / total_actual if total_actual else 0
18
+
19
+ return precision, recall
20
+
21
+ # Overall precision and recall
22
+ overall_precision, overall_recall = calculate_precision_recall(outputs_df)
23
+
24
+ # Precision and recall per topic
25
+ topic_precision_recall = outputs_df.groupby('Topic').apply(calculate_precision_recall).apply(pd.Series)
26
+ topic_precision_recall.columns = ['Precision', 'Recall']
27
+
28
+ # Display results
29
+ print(f"Overall Precision: {overall_precision:.3f}")
30
+ print(f"Overall Recall: {overall_recall:.3f}")
31
+ print("\nPrecision and Recall per Topic:")
32
+ print(topic_precision_recall)
create_exp2_outputs.py ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import openai
2
+ import pandas as pd
3
+ import pandas as pd
4
+ import json
5
+ import urllib
6
+ import math
7
+ import time
8
+ import random
9
+ import re
10
+ from tqdm import tqdm
11
+ from io import StringIO
12
+ import exp_lib
13
+
14
+
15
+
16
+ def experiment_2_trial(data_df, model_name):
17
+ x = data_df.sample(frac=1)
18
+ train_df = x.drop_duplicates('Misconception ID')
19
+ test_df = x.iloc[::-1].drop_duplicates('Misconception ID')
20
+ test_df = test_df.reset_index()
21
+ topics = [
22
+ 'Ratios and proportional reasoning',
23
+ 'Number Operations',
24
+ 'Patterns, relationships, and functions',
25
+ 'Number sense',
26
+ 'Algebraic representations',
27
+ 'Variables, expressions, and operations',
28
+ 'Equations and inequalities',
29
+ 'Properties of number and operations'
30
+ ]
31
+ # now, iterate by topic and slice each topic data out of train_df, test_df
32
+ topic_test_dfs = []
33
+ for topic in topics:
34
+ topic_test_df = test_df[test_df['Topic'] == topic].copy()
35
+ topic_test_df = topic_test_df.reset_index()
36
+ topic_train_df = train_df[train_df['Topic'] == topic].copy()
37
+ prompt = exp_lib.generate_prompt_test_batch(topic_train_df.to_dict(orient='records'), topic_test_df.to_dict(orient='records'))
38
+ response = exp_lib.get_gpt4_diagnosis(model_name, prompt)
39
+ response_df = pd.read_csv(StringIO(response), header=None, names=["test_example", "diagnosis"])
40
+ topic_test_df["Predicted Diagnosis"] = response_df["diagnosis"].str.strip()
41
+ topic_test_df["Model"] = model_name
42
+ topic_test_dfs.append(topic_test_df)
43
+
44
+ topic_test_df2 = pd.concat(topic_test_dfs)
45
+ return topic_test_df2[['Misconception ID', 'Example Number', 'Topic', 'Predicted Diagnosis', 'Model']]
46
+
47
+
48
+ def experiment_2(input_file_path, model_name, num_iterations, output_file_path):
49
+ data_df = pd.read_json(input_file_path)
50
+ experiment_2_results_list = []
51
+ for i in tqdm(range(num_iterations)):
52
+ try:
53
+ trial_result = experiment_2_trial(data_df, model_name)
54
+ trial_result['Trial'] = i
55
+ experiment_2_results_list.append(trial_result)
56
+ except Exception as e:
57
+ print(e)
58
+ experiment_2_results_df = pd.concat(experiment_2_results_list)
59
+ experiment_2_results_df['Correct'] = (experiment_2_results_df['Misconception ID'] == experiment_2_results_df['Predicted Diagnosis'])
60
+ experiment_2_results_df.to_csv(output_file_path)
61
+
62
+
63
+ if __name__ == '__main__':
64
+ experiment_name = 'experiment_2'
65
+ input_file_path = 'data/data.json'
66
+ model_name = 'gpt-4-turbo'
67
+ num_iterations = 100
68
+ output_file_path = f'outputs/{experiment_name}_{model_name}_{num_iterations}iters.csv'
69
+
70
+ experiment_2(
71
+ input_file_path,
72
+ model_name,
73
+ num_iterations,
74
+ output_file_path
75
+ )
create_exp2_results.py ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pandas as pd
2
+
3
+ output_file_path = 'outputs/experiment_2_gpt-4-turbo_100iters.csv'
4
+ outputs_df = pd.read_csv(output_file_path)
5
+
6
+ print(outputs_df.head())
7
+
8
+
9
+
10
+ def calculate_precision_recall(df):
11
+ # Calculate precision and recall
12
+ true_positives = df['Correct'].sum()
13
+ total_predicted = len(df)
14
+ total_actual = df['Misconception ID'].nunique()
15
+
16
+ precision = true_positives / total_predicted if total_predicted else 0
17
+ recall = true_positives / total_actual if total_actual else 0
18
+
19
+ return precision, recall
20
+
21
+ # Overall precision and recall
22
+ overall_precision, overall_recall = calculate_precision_recall(outputs_df)
23
+
24
+ # Precision and recall per topic
25
+ topic_precision_recall = outputs_df.groupby('Topic').apply(calculate_precision_recall).apply(pd.Series)
26
+ topic_precision_recall.columns = ['Precision', 'Recall']
27
+
28
+ # Display results
29
+ print(f"Overall Precision: {overall_precision:.3f}")
30
+ print(f"Overall Recall: {overall_recall:.3f}")
31
+ print("\nPrecision and Recall per Topic:")
32
+ print(topic_precision_recall)
exp_lib.py ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import openai
2
+ import pandas as pd
3
+ import pandas as pd
4
+ import json
5
+ import urllib
6
+ import math
7
+ import time
8
+ import random
9
+ import re
10
+ from tqdm import tqdm
11
+ from io import StringIO
12
+
13
+ from tqdm import tqdm
14
+
15
+ # In-context learning prompt template
16
+ def generate_prompt_test_batch(train_examples, test_examples):
17
+ prompt = (
18
+ "You are an expert tutor on middle school math with years of experience understanding students' most common math mistakes. "
19
+ "You have identified a set of common mistakes called Misconceptions, and you use them to diagnose student's answers to math questions. "
20
+ "You have also developed a labeled dataset of question items, and diagnosed them with the appropriate misconception ID.\n"
21
+ "Using the set of misconceptions and the labeled dataset, your task today is to take some items of unlabeled data and provide a diagnosis for each unlabeled item.\n\n"
22
+ "Here is the list of misconceptions together with a brief description:\n"
23
+ )
24
+ # Add training examples
25
+ for i, example in enumerate(train_examples):
26
+ prompt += f"""
27
+ Train Example {i+1}
28
+ Question:
29
+ {example['Question']}
30
+ Answer:
31
+ {example['Incorrect Answer']}
32
+ Diagnosis: {example['Misconception ID']}
33
+ Misconception Description: {example['Misconception']}
34
+ Topic of Misconception: {example['Topic']}
35
+
36
+ """
37
+
38
+
39
+ prompt += """
40
+ Below are the unlabeled Test Examples. For each Test Example, provide only the most likely Misconception ID for the Test Answer from the provided list.
41
+ Don't write anything else but a sequence of lines of the format $Test_Example_Number, $Misconception_ID
42
+
43
+ """
44
+
45
+ for i, example in enumerate(test_examples):
46
+ prompt += f"""
47
+ Test Example {i+1}:
48
+ Question:
49
+ {example['Question']}
50
+ Test Answer:
51
+ {example['Incorrect Answer']}
52
+
53
+ """
54
+
55
+ return prompt
56
+
57
+ # GPT-4 API call
58
+ def get_gpt4_diagnosis(model, prompt):
59
+ response = openai.ChatCompletion.create(
60
+ model=model,
61
+ messages=[
62
+ {"role": "system", "content": "You are a math expert specialized in diagnosing student misconceptions."},
63
+ {"role": "user", "content": prompt}
64
+ ],
65
+ temperature=0.2,
66
+ max_tokens=2000,
67
+ frequency_penalty=0.0,
68
+
69
+ )
70
+ return response.choices[0].message['content'].strip()
requirements.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ openai==0.28
2
+ pandas
3
+ tqdm