import openai import pandas as pd import pandas as pd import json import urllib import math import time import random import re from tqdm import tqdm from io import StringIO import exp_lib def experiment_1_trial(data_df, model_name): x = data_df.sample(frac=1) train_df = x.drop_duplicates('Misconception ID') test_df = x.iloc[::-1].drop_duplicates('Misconception ID') test_df = test_df.reset_index() prompt = exp_lib.generate_prompt_test_batch(train_df.to_dict(orient='records'), test_df.to_dict(orient='records')) response = exp_lib.get_gpt4_diagnosis(model_name, prompt) response_df = pd.read_csv(StringIO(response), header=None, names=["test_example", "diagnosis"]) test_df["Predicted Diagnosis"] = response_df["diagnosis"].str.strip() test_df["Model"] = model_name return test_df[['Misconception ID', 'Example Number', 'Topic', 'Predicted Diagnosis', 'Model']] def experiment_1(input_file_path, model_name, num_iterations, output_file_path): data_df = pd.read_json(input_file_path) experiment_1_results_list = [] for i in tqdm(range(num_iterations)): try: trial_result = experiment_1_trial(data_df, model_name) trial_result['Trial'] = i experiment_1_results_list.append(trial_result) except Exception as e: print(e) experiment_1_results_df = pd.concat(experiment_1_results_list) experiment_1_results_df['Correct'] = (experiment_1_results_df['Misconception ID'] == experiment_1_results_df['Predicted Diagnosis']) experiment_1_results_df.to_csv(output_file_path) if __name__ == '__main__': experiment_name = 'experiment_1' input_file_path = 'data/data.json' model_name = 'gpt-4-turbo' num_iterations = 100 output_file_path = f'outputs/{experiment_name}_{model_name}_{num_iterations}iters.csv' experiment_1( input_file_path, model_name, num_iterations, output_file_path )