import openai import pandas as pd import pandas as pd import json import urllib import math import time import random import re from tqdm import tqdm from io import StringIO import exp_lib def experiment_2_trial(data_df, model_name): x = data_df.sample(frac=1) train_df = x.drop_duplicates('Misconception ID') test_df = x.iloc[::-1].drop_duplicates('Misconception ID') test_df = test_df.reset_index() topics = [ 'Ratios and proportional reasoning', 'Number Operations', 'Patterns, relationships, and functions', 'Number sense', 'Algebraic representations', 'Variables, expressions, and operations', 'Equations and inequalities', 'Properties of number and operations' ] # now, iterate by topic and slice each topic data out of train_df, test_df topic_test_dfs = [] for topic in topics: topic_test_df = test_df[test_df['Topic'] == topic].copy() topic_test_df = topic_test_df.reset_index() topic_train_df = train_df[train_df['Topic'] == topic].copy() prompt = exp_lib.generate_prompt_test_batch(topic_train_df.to_dict(orient='records'), topic_test_df.to_dict(orient='records')) response = exp_lib.get_gpt4_diagnosis(model_name, prompt) response_df = pd.read_csv(StringIO(response), header=None, names=["test_example", "diagnosis"]) topic_test_df["Predicted Diagnosis"] = response_df["diagnosis"].str.strip() topic_test_df["Model"] = model_name topic_test_dfs.append(topic_test_df) topic_test_df2 = pd.concat(topic_test_dfs) return topic_test_df2[['Misconception ID', 'Example Number', 'Topic', 'Predicted Diagnosis', 'Model']] def experiment_2(input_file_path, model_name, num_iterations, output_file_path): data_df = pd.read_json(input_file_path) experiment_2_results_list = [] for i in tqdm(range(num_iterations)): try: trial_result = experiment_2_trial(data_df, model_name) trial_result['Trial'] = i experiment_2_results_list.append(trial_result) except Exception as e: print(e) experiment_2_results_df = pd.concat(experiment_2_results_list) experiment_2_results_df['Correct'] = (experiment_2_results_df['Misconception ID'] == experiment_2_results_df['Predicted Diagnosis']) experiment_2_results_df.to_csv(output_file_path) if __name__ == '__main__': experiment_name = 'experiment_2' input_file_path = 'data/data.json' model_name = 'gpt-4-turbo' num_iterations = 100 output_file_path = f'outputs/{experiment_name}_{model_name}_{num_iterations}iters.csv' experiment_2( input_file_path, model_name, num_iterations, output_file_path )