File size: 9,248 Bytes
7312480
 
 
 
 
0a69a55
7312480
0a69a55
4cc7a7b
7312480
 
 
 
 
 
 
f1a93ae
 
 
7312480
 
f5cee21
5c44be0
77b832b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
652d6f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77b832b
 
 
 
652d6f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77b832b
 
 
 
 
 
7312480
 
 
 
 
 
 
f5cee21
7312480
 
 
f5cee21
 
7312480
 
 
 
 
 
 
 
 
 
 
 
 
aef1c7c
7312480
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aef1c7c
 
 
77b832b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
---
annotations_creators:
- expert-generated
language_creators:
- found
language:
- yue
license:
- cc-by-4.0
multilinguality:
- monolingual
size_categories:
- 10K<n<100K
source_datasets:
- original
task_categories:
- translation
- text-generation
- fill-mask
task_ids:
- dialogue-modeling
paperswithcode_id: hong-kong-cantonese-corpus
pretty_name: The Hong Kong Cantonese Corpus (HKCanCor)
dataset_info:
  features:
  - name: conversation_id
    dtype: string
  - name: speaker
    dtype: string
  - name: turn_number
    dtype: int16
  - name: tokens
    sequence: string
  - name: transcriptions
    sequence: string
  - name: pos_tags_prf
    sequence:
      class_label:
        names:
          '0': '!'
          '1': '"'
          '2': '#'
          '3': ''''
          '4': ','
          '5': '-'
          '6': .
          '7': '...'
          '8': '?'
          '9': A
          '10': AD
          '11': AG
          '12': AIRWAYS0
          '13': AN
          '14': AND
          '15': B
          '16': BG
          '17': BEAN0
          '18': C
          '19': CENTRE0
          '20': CG
          '21': D
          '22': D1
          '23': DG
          '24': E
          '25': ECHO0
          '26': F
          '27': G
          '28': G1
          '29': G2
          '30': H
          '31': HILL0
          '32': I
          '33': IG
          '34': J
          '35': JB
          '36': JM
          '37': JN
          '38': JNS
          '39': JNT
          '40': JNZ
          '41': K
          '42': KONG
          '43': L
          '44': L1
          '45': LG
          '46': M
          '47': MG
          '48': MONTY0
          '49': MOUNTAIN0
          '50': N
          '51': N1
          '52': NG
          '53': NR
          '54': NS
          '55': NSG
          '56': NT
          '57': NX
          '58': NZ
          '59': O
          '60': P
          '61': PEPPER0
          '62': Q
          '63': QG
          '64': R
          '65': RG
          '66': S
          '67': SOUND0
          '68': T
          '69': TELECOM0
          '70': TG
          '71': TOUCH0
          '72': U
          '73': UG
          '74': U0
          '75': V
          '76': V1
          '77': VD
          '78': VG
          '79': VK
          '80': VN
          '81': VU
          '82': VUG
          '83': W
          '84': X
          '85': XA
          '86': XB
          '87': XC
          '88': XD
          '89': XE
          '90': XJ
          '91': XJB
          '92': XJN
          '93': XJNT
          '94': XJNZ
          '95': XJV
          '96': XJA
          '97': XL1
          '98': XM
          '99': XN
          '100': XNG
          '101': XNR
          '102': XNS
          '103': XNT
          '104': XNX
          '105': XNZ
          '106': XO
          '107': XP
          '108': XQ
          '109': XR
          '110': XS
          '111': XT
          '112': XV
          '113': XVG
          '114': XVN
          '115': XX
          '116': Y
          '117': YG
          '118': Y1
          '119': Z
  - name: pos_tags_ud
    sequence:
      class_label:
        names:
          '0': DET
          '1': PRON
          '2': VERB
          '3': NOUN
          '4': ADJ
          '5': PUNCT
          '6': INTJ
          '7': ADV
          '8': V
          '9': PART
          '10': X
          '11': NUM
          '12': PROPN
          '13': AUX
          '14': CCONJ
          '15': ADP
  splits:
  - name: train
    num_bytes: 5746381
    num_examples: 10801
  download_size: 961514
  dataset_size: 5746381
---

# Dataset Card for The Hong Kong Cantonese Corpus (HKCanCor)

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Homepage:** http://compling.hss.ntu.edu.sg/hkcancor/
- **Repository:** https://github.com/fcbond/hkcancor
- **Paper:** [Luke and Wang, 2015](https://github.com/fcbond/hkcancor/blob/master/data/LukeWong_Hong-Kong-Cantonese-Corpus.pdf)
- **Leaderboard:** N/A
- **Point of Contact:** Luke Kang Kwong

### Dataset Summary
The Hong Kong Cantonese Corpus (HKCanCor) comprise transcribed conversations recorded 
between March 1997 and August 1998. It contains recordings of spontaneous speech (51 texts)
and radio programmes (42 texts), which involve 2 to 4 speakers, with 1 text of monologue.

In total, the corpus contains around 230,000 Chinese words. The text is word-segmented (i.e., tokenization is at word-level, and each token can span multiple Chinese characters). Tokens are annotated with part-of-speech (POS) tags and romanised Cantonese pronunciation. 

* Romanisation
  * Follows conventions set by the Linguistic Society of Hong Kong (LSHK).
* POS
  * The tagset used by this corpus extends the one in the Peita-Fujitsu-Renmin Ribao (PRF) corpus (Duan et al., 2000). Extensions were made to further capture Cantonese-specific phenomena. 
  * To facilitate everyday usage and for better comparability across languages and/or corpora, this dataset also includes the tags mapped to the [Universal Dependencies 2.0](https://universaldependencies.org/u/pos/index.html) format. This mapping references the [PyCantonese](https://github.com/jacksonllee/pycantonese) library.


### Supported Tasks and Leaderboards
[More Information Needed]

### Languages
Yue Chinese / Cantonese (Hong Kong).

## Dataset Structure
This corpus has 10801 utterances and approximately 230000 Chinese words. 
There is no predefined split. 

### Data Instances
Each instance contains a conversation id, speaker id within that conversation,
turn number, part-of-speech tag for each Chinese word in the PRF format and UD2.0 format, 
and the utterance written in Chinese characters as well as its LSHK format romanisation.


For example: 
```python
{
    'conversation_id': 'TNR016-DR070398-HAI6V'
    'pos_tags_prf': ['v', 'w'], 
    'pos_tags_ud': ['VERB', 'PUNCT'],
    'speaker': 'B', 
    'transcriptions': ['hai6', 'VQ1'], 
    'turn_number': 112, 
    'tokens': ['係', '。']
}
 ```

### Data Fields
- conversation_id: unique dialogue-level id
- pos_tags_prf: POS tag using the PRF format at token-level
- pos_tag_ud: POS tag using the UD2.0 format at token-level
- speaker: unique speaker id within dialogue
- transcriptions: token-level romanisation in the LSHK format
- turn_number: turn number in dialogue
- tokens: Chinese word or punctuation at token-level

### Data Splits
There are no specified splits in this dataset.

## Dataset Creation

### Curation Rationale

[More Information Needed]

### Source Data

#### Initial Data Collection and Normalization

[More Information Needed]

#### Who are the source language producers?

[More Information Needed]

### Annotations

#### Annotation process

[More Information Needed]

#### Who are the annotators?

[More Information Needed]

### Personal and Sensitive Information

[More Information Needed]

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed]

### Discussion of Biases

[More Information Needed]

### Other Known Limitations

[More Information Needed]

## Additional Information

### Dataset Curators

[More Information Needed]

### Licensing Information
This work is licensed under a [Creative Commons Attribution 4.0 International License](https://creativecommons.org/licenses/by/4.0/deed.ast).


### Citation Information
This corpus was developed by [Luke and Wong, 2015](http://compling.hss.ntu.edu.sg/hkcancor/data/LukeWong_Hong-Kong-Cantonese-Corpus.pdf).
```
@article{luke2015hong,
  author={Luke, Kang-Kwong and Wong, May LY},
  title={The Hong Kong Cantonese corpus: design and uses},
  journal={Journal of Chinese Linguistics},
  year={2015},
  pages={309-330},
  month={12}
}
```
The POS tagset to Universal Dependency tagset mapping is provided by Jackson Lee, as a part of the [PyCantonese](https://github.com/jacksonllee/pycantonese) library. 
```
@misc{lee2020,
  author = {Lee, Jackson},
  title = {PyCantonese: Cantonese Linguistics and NLP in Python},
  year = {2020},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/jacksonllee/pycantonese}},
  commit = {1d58f44e1cb097faa69de6b617e1d28903b84b98}
}
```
### Contributions

Thanks to [@j-chim](https://github.com/j-chim) for adding this dataset.