Datasets:
Nicholas Broad
commited on
Commit
•
0f2e4bd
1
Parent(s):
e58c777
builder script
Browse files- mediasum.py +117 -0
mediasum.py
ADDED
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
# Lint as: python3
|
17 |
+
"""MediaSum dataset"""
|
18 |
+
|
19 |
+
import os
|
20 |
+
import json
|
21 |
+
|
22 |
+
import datasets
|
23 |
+
|
24 |
+
|
25 |
+
logger = datasets.logging.get_logger(__name__)
|
26 |
+
|
27 |
+
|
28 |
+
_HOMEPAGE = "https://github.com/zcgzcgzcg1/MediaSum"
|
29 |
+
|
30 |
+
_DESCRIPTION = """\
|
31 |
+
This large-scale media interview dataset contains 463.6K transcripts with abstractive summaries,
|
32 |
+
collected from interview transcripts and overview / topic descriptions from NPR and CNN.
|
33 |
+
"""
|
34 |
+
|
35 |
+
_CITATION = """\
|
36 |
+
@article{zhu2021mediasum,
|
37 |
+
title={MediaSum: A Large-scale Media Interview Dataset for Dialogue Summarization},
|
38 |
+
author={Zhu, Chenguang and Liu, Yang and Mei, Jie and Zeng, Michael},
|
39 |
+
journal={arXiv preprint arXiv:2103.06410},
|
40 |
+
year={2021}
|
41 |
+
}
|
42 |
+
"""
|
43 |
+
|
44 |
+
_DOWNLOAD_URLS = {
|
45 |
+
"train": "https://huggingface.co/datasets/nbroad/mediasum/resolve/main/train.json",
|
46 |
+
"validation": "https://huggingface.co/datasets/nbroad/mediasum/resolve/main/validation.json",
|
47 |
+
"test": "https://huggingface.co/datasets/nbroad/mediasum/resolve/main/test.json",
|
48 |
+
}
|
49 |
+
|
50 |
+
|
51 |
+
class MediaSumConfig(datasets.BuilderConfig):
|
52 |
+
"""BuilderConfig for MediaSum."""
|
53 |
+
|
54 |
+
def __init__(self, **kwargs):
|
55 |
+
"""BuilderConfig for MediaSum.
|
56 |
+
Args:
|
57 |
+
**kwargs: keyword arguments forwarded to super.
|
58 |
+
"""
|
59 |
+
super().__init__(**kwargs)
|
60 |
+
|
61 |
+
|
62 |
+
class MediaSum(datasets.GeneratorBasedBuilder):
|
63 |
+
"""MediaSum summarization dataset."""
|
64 |
+
|
65 |
+
BUILDER_CONFIGS = [MediaSumConfig(name="mediasum", description="Plain text")]
|
66 |
+
|
67 |
+
def _info(self):
|
68 |
+
return datasets.DatasetInfo(
|
69 |
+
description=_DESCRIPTION,
|
70 |
+
features=datasets.Features(
|
71 |
+
{
|
72 |
+
"id": datasets.Value("string"),
|
73 |
+
"program": datasets.Value("string"),
|
74 |
+
"date": datasets.Value("string"),
|
75 |
+
"url": datasets.Value("string"),
|
76 |
+
"title": datasets.Value("string"),
|
77 |
+
"summary": datasets.Value("string"),
|
78 |
+
"utt": datasets.features.Sequence(
|
79 |
+
datasets.Value("string")
|
80 |
+
),
|
81 |
+
"speaker": datasets.features.Sequence(
|
82 |
+
datasets.Value("string")
|
83 |
+
),
|
84 |
+
}
|
85 |
+
),
|
86 |
+
supervised_keys=None,
|
87 |
+
homepage=_HOMEPAGE,
|
88 |
+
citation=_CITATION,
|
89 |
+
)
|
90 |
+
|
91 |
+
def _split_generators(self, dl_manager):
|
92 |
+
dl_path = dl_manager.download(_DOWNLOAD_URLS)
|
93 |
+
|
94 |
+
return [
|
95 |
+
datasets.SplitGenerator(
|
96 |
+
name=split,
|
97 |
+
gen_kwargs={
|
98 |
+
"filepath": dl_path[split],
|
99 |
+
},
|
100 |
+
)
|
101 |
+
for split in [
|
102 |
+
datasets.Split.TRAIN,
|
103 |
+
datasets.Split.VALIDATION,
|
104 |
+
datasets.Split.TEST,
|
105 |
+
]
|
106 |
+
]
|
107 |
+
|
108 |
+
def _generate_examples(self, filepath):
|
109 |
+
|
110 |
+
with open(filepath, "r") as fp:
|
111 |
+
for idx, line in enumerate(fp):
|
112 |
+
data = json.loads(line)
|
113 |
+
|
114 |
+
# Some do not have titles
|
115 |
+
if "title" not in data:
|
116 |
+
data["title"] = ""
|
117 |
+
yield idx, data
|