mmmlu / mmmlu.py
ncoop57
Add new url
3bce228
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# TODO: Address all TODOs and remove all explanatory comments
"""TODO: Add a description here."""
import csv
import os
import datasets
from pathlib import Path
# TODO: Add BibTeX citation
# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """\
@InProceedings{huggingface:dataset,
title = {A great new dataset},
author={huggingface, Inc.
},
year={2020}
}
"""
# TODO: Add description of the dataset here
# You can copy an official description
_DESCRIPTION = """\
This new dataset is designed to solve this great NLP task and is crafted with a lot of care.
"""
# TODO: Add a link to an official homepage for the dataset here
_HOMEPAGE = ""
# TODO: Add the licence for the dataset here if you can find it
_LICENSE = "MIT License"
ROOT = Path("data")
_URLS = {
"validation": list((ROOT / "val").glob("*.csv")),
"dev": list((ROOT / "dev").glob("*.csv")),
"test": list((ROOT / "test").glob("*.csv")),
}
_URL = "https://huggingface.co/datasets/ncoop57/mmmlu/resolve/main/data.zip"
CONFIG_NAMES = [
"abstract_algebra",
"high_school_mathematics",
"nutrition",
"high_school_macroeconomics",
"world_religions",
"high_school_statistics",
"clinical_knowledge",
"medical_genetics",
"college_physics",
"professional_law",
"virology",
"astronomy",
"moral_disputes",
"electrical_engineering",
"high_school_psychology",
"public_relations",
"college_biology",
"college_mathematics",
"econometrics",
"anatomy",
"miscellaneous",
"international_law",
"management",
"prehistory",
"formal_logic",
"high_school_world_history",
"conceptual_physics",
"high_school_microeconomics",
"high_school_computer_science",
"elementary_mathematics",
"human_aging",
"logical_fallacies",
"sociology",
"us_foreign_policy",
"moral_scenarios",
"human_sexuality",
"high_school_us_history",
"computer_security",
"marketing",
"high_school_european_history",
"security_studies",
"college_computer_science",
"jurisprudence",
"high_school_geography",
"high_school_physics",
"philosophy",
"machine_learning",
"high_school_chemistry",
"high_school_biology",
"professional_accounting",
"business_ethics",
"professional_psychology",
"high_school_government_and_politics",
"college_medicine",
"professional_medicine",
"college_chemistry",
"global_facts"
]
# TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case
class NewDataset(datasets.GeneratorBasedBuilder):
"""TODO: Short description of my dataset."""
# This is an example of a dataset with multiple configurations.
# If you don't want/need to define several sub-sets in your dataset,
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
# If you need to make complex sub-parts in the datasets with configurable options
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
# BUILDER_CONFIG_CLASS = MyBuilderConfig
# You will be able to load one or the other configurations in the following list with
# data = datasets.load_dataset('my_dataset', 'first_domain')
# data = datasets.load_dataset('my_dataset', 'second_domain')
BUILDER_CONFIGS = [
datasets.BuilderConfig(
name=task,
version=datasets.Version("1.1.0"),
description=f"Task {task}"
)
for task in CONFIG_NAMES
]
DEFAULT_CONFIG_NAME = CONFIG_NAMES[0]
def _info(self):
features = datasets.Features(
{
"question": datasets.Value("string"),
"option1": datasets.Value("string"),
"option2": datasets.Value("string"),
"option3": datasets.Value("string"),
"option4": datasets.Value("string"),
"answer": datasets.Value("string")
# These are the features of your dataset like images, labels ...
}
)
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# This defines the different columns of the dataset and their types
features=features, # Here we define them above because they are different between the two configurations
# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
# specify them. They'll be used if as_supervised=True in builder.as_dataset.
# supervised_keys=("sentence", "label"),
# Homepage of the dataset for documentation
homepage=_HOMEPAGE,
# License for the dataset if available
license=_LICENSE,
# Citation for the dataset
citation=_CITATION,
)
def _split_generators(self, dl_manager):
data_dir = dl_manager.download_and_extract(_URL)
data_dir = Path(data_dir) / "data"
return [
datasets.SplitGenerator(
name="dev",
gen_kwargs={
"filename": data_dir / f"dev/{self.config.name}_dev.csv",
}
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"filename": data_dir / f"val/{self.config.name}_val.csv",
}
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filename": data_dir / f"test/{self.config.name}_test.csv",
}
)
]
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
def _generate_examples(self, filename):
# read in the csv file
with open(filename, encoding="utf-8") as f:
csv_reader = csv.reader(f, delimiter=",")
for id_, row in enumerate(csv_reader):
# row format: question, option1, option2, option3, option4, answer
yield id_, {
"question": str(row[0]),
"option1": str(row[1]),
"option2": str(row[2]),
"option3": str(row[3]),
"option4": str(row[4]),
"answer": str(row[5]),
}