Datasets:

Modalities:
Image
Text
Formats:
json
ArXiv:
Libraries:
Datasets
pandas
License:
File size: 1,534 Bytes
f3cb5c8
 
 
cc7948c
ba8945d
cc7948c
ba8945d
 
 
 
 
 
 
 
 
 
 
 
cc7948c
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
---
license: odc-by
---
#### Mind2Web training set for the paper: [Harnessing Webpage Uis For Text Rich Visual Understanding](https://arxiv.org/abs/2410.13824)

🌐 [Homepage](https://neulab.github.io/MultiUI/) | 🐍 [GitHub](https://github.com/neulab/multiui) | 📖 [arXiv](https://arxiv.org/abs/2410.13824)

## Introduction
We introduce **MultiUI**, a dataset containing 7.3 million samples from 1 million websites, covering diverse multi- modal tasks and UI layouts. Models trained on **MultiUI** not only excel in web UI tasks—achieving up to a 48% improvement on VisualWebBench and a 19.1% boost in action accuracy on a web agent dataset Mind2Web—but also generalize surprisingly well to non-web UI tasks and even to non-UI domains, such as document understanding, OCR, and chart interpretation. 

<video controls autoplay src="https://cdn-uploads.huggingface.co/production/uploads/65403d8781a8731a1c09a584/vk7yT4Y7ydBOHM6BojmlI.mp4"></video>


## Contact
* Junpeng Liu: [email protected]
* Xiang Yue: [email protected]

## Citation
If you find this work helpful, please cite out paper:
````
@misc{liu2024harnessingwebpageuistextrich,
      title={Harnessing Webpage UIs for Text-Rich Visual Understanding}, 
      author={Junpeng Liu and Tianyue Ou and Yifan Song and Yuxiao Qu and Wai Lam and Chenyan Xiong and Wenhu Chen and Graham Neubig and Xiang Yue},
      year={2024},
      eprint={2410.13824},
      archivePrefix={arXiv},
      primaryClass={cs.CV},
      url={https://arxiv.org/abs/2410.13824}, 
}
````