File size: 1,534 Bytes
f3cb5c8 cc7948c ba8945d cc7948c ba8945d cc7948c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 |
---
license: odc-by
---
#### Mind2Web training set for the paper: [Harnessing Webpage Uis For Text Rich Visual Understanding](https://arxiv.org/abs/2410.13824)
🌐 [Homepage](https://neulab.github.io/MultiUI/) | 🐍 [GitHub](https://github.com/neulab/multiui) | 📖 [arXiv](https://arxiv.org/abs/2410.13824)
## Introduction
We introduce **MultiUI**, a dataset containing 7.3 million samples from 1 million websites, covering diverse multi- modal tasks and UI layouts. Models trained on **MultiUI** not only excel in web UI tasks—achieving up to a 48% improvement on VisualWebBench and a 19.1% boost in action accuracy on a web agent dataset Mind2Web—but also generalize surprisingly well to non-web UI tasks and even to non-UI domains, such as document understanding, OCR, and chart interpretation.
<video controls autoplay src="https://cdn-uploads.huggingface.co/production/uploads/65403d8781a8731a1c09a584/vk7yT4Y7ydBOHM6BojmlI.mp4"></video>
## Contact
* Junpeng Liu: [email protected]
* Xiang Yue: [email protected]
## Citation
If you find this work helpful, please cite out paper:
````
@misc{liu2024harnessingwebpageuistextrich,
title={Harnessing Webpage UIs for Text-Rich Visual Understanding},
author={Junpeng Liu and Tianyue Ou and Yifan Song and Yuxiao Qu and Wai Lam and Chenyan Xiong and Wenhu Chen and Graham Neubig and Xiang Yue},
year={2024},
eprint={2410.13824},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2410.13824},
}
```` |