|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""TED talk high/low-resource paired language data set from Qi, et al. 2018.""" |
|
|
|
|
|
import datasets |
|
|
|
|
|
_DESCRIPTION = """\ |
|
Data sets derived from TED talk transcripts for comparing similar language pairs |
|
where one is high resource and the other is low resource. |
|
""" |
|
|
|
_CITATION = """\ |
|
@inproceedings{Ye2018WordEmbeddings, |
|
author = {Ye, Qi and Devendra, Sachan and Matthieu, Felix and Sarguna, Padmanabhan and Graham, Neubig}, |
|
title = {When and Why are pre-trained word embeddings useful for Neural Machine Translation}, |
|
booktitle = {HLT-NAACL}, |
|
year = {2018}, |
|
} |
|
""" |
|
|
|
_DATA_URL = "http://www.phontron.com/data/qi18naacl-dataset.tar.gz" |
|
|
|
_VALID_LANGUAGE_PAIRS = ( |
|
("az", "en"), |
|
("az_tr", "en"), |
|
("be", "en"), |
|
("be_ru", "en"), |
|
("es", "pt"), |
|
("fr", "pt"), |
|
("gl", "en"), |
|
("gl_pt", "en"), |
|
("he", "pt"), |
|
("it", "pt"), |
|
("pt", "en"), |
|
("ru", "en"), |
|
("ru", "pt"), |
|
("tr", "en"), |
|
) |
|
|
|
|
|
class TedHrlrConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for TED talk data comparing high/low resource languages.""" |
|
|
|
def __init__(self, language_pair=(None, None), **kwargs): |
|
"""BuilderConfig for TED talk data comparing high/low resource languages. |
|
|
|
The first language in `language_pair` should either be a 2-letter coded |
|
string or two such strings joined by an underscore (e.g., "az" or "az_tr"). |
|
In cases where it contains two languages, the train data set will contain an |
|
(unlabelled) mix of the two languages and the validation and test sets |
|
will contain only the first language. This dataset will refer to the |
|
source language by the 5-letter string with the underscore. The second |
|
language in `language_pair` must be a 2-letter coded string. |
|
|
|
For example, to get pairings between Russian and English, specify |
|
`("ru", "en")` as `language_pair`. To get a mix of Belarusian and Russian in |
|
the training set and purely Belarusian in the validation and test sets, |
|
specify `("be_ru", "en")`. |
|
|
|
Args: |
|
language_pair: pair of languages that will be used for translation. The |
|
first will be used as source and second as target in supervised mode. |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
name = "%s_to_%s" % (language_pair[0].replace("_", ""), language_pair[1]) |
|
|
|
description = ("Translation dataset from %s to %s in plain text.") % (language_pair[0], language_pair[1]) |
|
super(TedHrlrConfig, self).__init__(name=name, description=description, **kwargs) |
|
|
|
|
|
assert language_pair in _VALID_LANGUAGE_PAIRS, ( |
|
"Config language pair (%s, " "%s) not supported" |
|
) % language_pair |
|
|
|
self.language_pair = language_pair |
|
|
|
|
|
class TedHrlr(datasets.GeneratorBasedBuilder): |
|
"""TED talk data set for comparing high and low resource languages.""" |
|
|
|
BUILDER_CONFIGS = [ |
|
TedHrlrConfig( |
|
language_pair=pair, |
|
version=datasets.Version("1.0.0", ""), |
|
) |
|
for pair in _VALID_LANGUAGE_PAIRS |
|
] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{"translation": datasets.features.Translation(languages=self.config.language_pair)} |
|
), |
|
homepage="https://github.com/neulab/word-embeddings-for-nmt", |
|
supervised_keys=self.config.language_pair, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
archive = dl_manager.download(_DATA_URL) |
|
source, target = self.config.language_pair |
|
|
|
data_dir = "datasets/%s_to_%s" % (source, target) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"source_file": data_dir + "/" + f"{source.replace('_', '-')}.train", |
|
"target_file": data_dir + "/" + f"{target}.train", |
|
"files": dl_manager.iter_archive(archive), |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"source_file": data_dir + "/" + f"{source.split('_')[0]}.dev", |
|
"target_file": data_dir + "/" + f"{target}.dev", |
|
"files": dl_manager.iter_archive(archive), |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"source_file": data_dir + "/" + f"{source.split('_')[0]}.test", |
|
"target_file": data_dir + "/" + f"{target}.test", |
|
"files": dl_manager.iter_archive(archive), |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, source_file, target_file, files): |
|
"""This function returns the examples in the raw (text) form.""" |
|
source_sentences, target_sentences = None, None |
|
for path, f in files: |
|
if path == source_file: |
|
source_sentences = f.read().decode("utf-8").split("\n") |
|
elif path == target_file: |
|
target_sentences = f.read().decode("utf-8").split("\n") |
|
if source_sentences is not None and target_sentences is not None: |
|
break |
|
|
|
assert len(target_sentences) == len(source_sentences), "Sizes do not match: %d vs %d for %s vs %s." % ( |
|
len(source_sentences), |
|
len(target_sentences), |
|
source_file, |
|
target_file, |
|
) |
|
|
|
source, target = self.config.language_pair |
|
for idx, (l1, l2) in enumerate(zip(source_sentences, target_sentences)): |
|
result = {"translation": {source: l1, target: l2}} |
|
|
|
if all(result.values()): |
|
yield idx, result |
|
|