Datasets:

Languages:
English
ArXiv:
License:
wiki_asp / wiki_asp.py
system's picture
system HF staff
Update files from the datasets library (from 1.6.1)
df293f3
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Wiki Asp datasert for Multi-domain Aspect-based Summarization"""
import json
import os
import datasets
# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """\
@article{hayashi20tacl,
title = {WikiAsp: A Dataset for Multi-domain Aspect-based Summarization},
authors = {Hiroaki Hayashi and Prashant Budania and Peng Wang and Chris Ackerson and Raj Neervannan and Graham Neubig},
journal = {Transactions of the Association for Computational Linguistics (TACL)},
year = {2020},
url = {https://arxiv.org/abs/2011.07832}
}
"""
_DESCRIPTION = """\
WikiAsp is a multi-domain, aspect-based summarization dataset in the encyclopedic
domain. In this task, models are asked to summarize cited reference documents of a
Wikipedia article into aspect-based summaries. Each of the 20 domains include 10
domain-specific pre-defined aspects.
"""
_HOMEPAGE = "https://github.com/neulab/wikiasp"
_LICENSE = "CC BY-SA 4.0"
# Download links
_URLs = {
"album": "http://phontron.com/download/wikiasp/Album.tar.bz2",
"animal": "http://phontron.com/download/wikiasp/Animal.tar.bz2",
"artist": "http://phontron.com/download/wikiasp/Artist.tar.bz2",
"building": "http://phontron.com/download/wikiasp/Building.tar.bz2",
"company": "http://phontron.com/download/wikiasp/Company.tar.bz2",
"educational_institution": "http://phontron.com/download/wikiasp/EducationalInstitution.tar.bz2",
"event": "http://phontron.com/download/wikiasp/Event.tar.bz2",
"film": "http://phontron.com/download/wikiasp/Film.tar.bz2",
"group": "http://phontron.com/download/wikiasp/Group.tar.bz2",
"historic_place": "http://phontron.com/download/wikiasp/HistoricPlace.tar.bz2",
"infrastructure": "http://phontron.com/download/wikiasp/Infrastructure.tar.bz2",
"mean_of_transportation": "http://phontron.com/download/wikiasp/MeanOfTransportation.tar.bz2",
"office_holder": "http://phontron.com/download/wikiasp/OfficeHolder.tar.bz2",
"plant": "http://phontron.com/download/wikiasp/Plant.tar.bz2",
"single": "http://phontron.com/download/wikiasp/Single.tar.bz2",
"soccer_player": "http://phontron.com/download/wikiasp/SoccerPlayer.tar.bz2",
"software": "http://phontron.com/download/wikiasp/Software.tar.bz2",
"television_show": "http://phontron.com/download/wikiasp/TelevisionShow.tar.bz2",
"town": "http://phontron.com/download/wikiasp/Town.tar.bz2",
"written_work": "http://phontron.com/download/wikiasp/WrittenWork.tar.bz2",
}
class WikiAsp(datasets.GeneratorBasedBuilder):
"""TODO: Short description of my dataset."""
VERSION = datasets.Version("1.1.0")
# This is an example of a dataset with multiple configurations.
# If you don't want/need to define several sub-sets in your dataset,
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
# If you need to make complex sub-parts in the datasets with configurable options
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
# BUILDER_CONFIG_CLASS = MyBuilderConfig
# You will be able to load one or the other configurations in the following list with
# data = datasets.load_dataset('my_dataset', 'first_domain')
# data = datasets.load_dataset('my_dataset', 'second_domain')
BUILDER_CONFIGS = [
datasets.BuilderConfig(
name="album", version=VERSION, description="A subset of dataset from the musical album domain"
),
datasets.BuilderConfig(
name="animal", version=VERSION, description="A subset of dataset from the animal domain"
),
datasets.BuilderConfig(
name="artist", version=VERSION, description="A subset of dataset from the artist domain"
),
datasets.BuilderConfig(
name="building", version=VERSION, description="A subset of dataset from the buildings domain"
),
datasets.BuilderConfig(
name="company", version=VERSION, description="A subset of dataset from the company domain"
),
datasets.BuilderConfig(
name="educational_institution",
version=VERSION,
description="A subset of dataset from the educational institution domain",
),
datasets.BuilderConfig(
name="event", version=VERSION, description="A subset of dataset from the events domain"
),
datasets.BuilderConfig(name="film", version=VERSION, description="A subset of dataset from the film domain"),
datasets.BuilderConfig(name="group", version=VERSION, description="A subset of dataset from the group domain"),
datasets.BuilderConfig(
name="historic_place", version=VERSION, description="A subset of dataset from the historic places domain"
),
datasets.BuilderConfig(
name="infrastructure", version=VERSION, description="A subset of dataset from the infrastructure domain"
),
datasets.BuilderConfig(
name="mean_of_transportation",
version=VERSION,
description="A subset of dataset from the transportation mean domain",
),
datasets.BuilderConfig(
name="office_holder", version=VERSION, description="A subset of dataset from the office holder domain"
),
datasets.BuilderConfig(name="plant", version=VERSION, description="A subset of dataset from the plant domain"),
datasets.BuilderConfig(
name="single", version=VERSION, description="A subset of dataset from the musical single domain"
),
datasets.BuilderConfig(
name="soccer_player", version=VERSION, description="A subset of dataset from the soccer player domain"
),
datasets.BuilderConfig(
name="software", version=VERSION, description="A subset of dataset from the software domain"
),
datasets.BuilderConfig(
name="television_show", version=VERSION, description="A subset of dataset from the television show domain"
),
datasets.BuilderConfig(name="town", version=VERSION, description="A subset of dataset from the town domain"),
datasets.BuilderConfig(
name="written_work", version=VERSION, description="A subset of dataset from the written work domain"
),
]
def _info(self):
features = datasets.Features(
{
"exid": datasets.Value("string"),
"inputs": datasets.Sequence(datasets.Value("string")),
"targets": datasets.Sequence(datasets.Sequence(datasets.Value("string"))),
}
)
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# This defines the different columns of the dataset and their types
features=features, # Here we define them above because they are different between the two configurations
# If there's a common (input, target) tuple from the features,
# specify them here. They'll be used if as_supervised=True in
# builder.as_dataset.
supervised_keys=None,
# Homepage of the dataset for documentation
homepage=_HOMEPAGE,
# License for the dataset if available
license=_LICENSE,
# Citation for the dataset
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
my_urls = _URLs[self.config.name]
data_dir = dl_manager.download_and_extract(my_urls)
data_dir = os.path.join(data_dir, self.config.name.title().replace("_", ""))
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": os.path.join(data_dir, "train.jsonl"),
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={"filepath": os.path.join(data_dir, "test.jsonl"), "split": "test"},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"filepath": os.path.join(data_dir, "valid.jsonl"),
"split": "dev",
},
),
]
def _generate_examples(self, filepath, split):
"""Yields examples."""
with open(filepath, encoding="utf-8") as f:
for id_, row in enumerate(f):
data = json.loads(row)
yield id_, {
"exid": data["exid"],
"inputs": data["inputs"],
"targets": data["targets"],
}