File size: 9,548 Bytes
b17f423
 
 
 
 
ef61fd8
b17f423
ef61fd8
b17f423
 
 
 
 
 
 
 
 
 
c52091f
b17f423
 
0e88f74
c69f212
dda6b0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c69f212
 
 
dda6b0f
 
6535e48
dda6b0f
b3dc974
6535e48
b3dc974
dda6b0f
6535e48
dda6b0f
6535e48
 
 
dda6b0f
 
 
 
 
 
 
 
 
 
 
 
 
c69f212
 
 
dda6b0f
 
6535e48
dda6b0f
b3dc974
6535e48
b3dc974
dda6b0f
6535e48
dda6b0f
6535e48
 
 
dda6b0f
 
 
 
 
 
 
 
 
 
 
 
 
c69f212
 
 
dda6b0f
 
6535e48
dda6b0f
b3dc974
6535e48
b3dc974
dda6b0f
6535e48
dda6b0f
6535e48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b17f423
 
 
 
 
 
 
0e88f74
b17f423
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef44a44
b17f423
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef44a44
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
---
annotations_creators:
- expert-generated
language_creators:
- found
language:
- pt
license:
- unknown
multilinguality:
- monolingual
size_categories:
- 10K<n<100K
source_datasets:
- original
task_categories:
- text-classification
task_ids:
- text-scoring
- natural-language-inference
- semantic-similarity-scoring
paperswithcode_id: assin
pretty_name: ASSIN
dataset_info:
- config_name: full
  features:
  - name: sentence_pair_id
    dtype: int64
  - name: premise
    dtype: string
  - name: hypothesis
    dtype: string
  - name: relatedness_score
    dtype: float32
  - name: entailment_judgment
    dtype:
      class_label:
        names:
          '0': NONE
          '1': ENTAILMENT
          '2': PARAPHRASE
  splits:
  - name: train
    num_bytes: 986499
    num_examples: 5000
  - name: test
    num_bytes: 767304
    num_examples: 4000
  - name: validation
    num_bytes: 196821
    num_examples: 1000
  download_size: 1335013
  dataset_size: 1950624
- config_name: ptbr
  features:
  - name: sentence_pair_id
    dtype: int64
  - name: premise
    dtype: string
  - name: hypothesis
    dtype: string
  - name: relatedness_score
    dtype: float32
  - name: entailment_judgment
    dtype:
      class_label:
        names:
          '0': NONE
          '1': ENTAILMENT
          '2': PARAPHRASE
  splits:
  - name: train
    num_bytes: 463505
    num_examples: 2500
  - name: test
    num_bytes: 374424
    num_examples: 2000
  - name: validation
    num_bytes: 91203
    num_examples: 500
  download_size: 639490
  dataset_size: 929132
- config_name: ptpt
  features:
  - name: sentence_pair_id
    dtype: int64
  - name: premise
    dtype: string
  - name: hypothesis
    dtype: string
  - name: relatedness_score
    dtype: float32
  - name: entailment_judgment
    dtype:
      class_label:
        names:
          '0': NONE
          '1': ENTAILMENT
          '2': PARAPHRASE
  splits:
  - name: train
    num_bytes: 522994
    num_examples: 2500
  - name: test
    num_bytes: 392880
    num_examples: 2000
  - name: validation
    num_bytes: 105618
    num_examples: 500
  download_size: 706661
  dataset_size: 1021492
configs:
- config_name: full
  data_files:
  - split: train
    path: full/train-*
  - split: test
    path: full/test-*
  - split: validation
    path: full/validation-*
  default: true
- config_name: ptbr
  data_files:
  - split: train
    path: ptbr/train-*
  - split: test
    path: ptbr/test-*
  - split: validation
    path: ptbr/validation-*
- config_name: ptpt
  data_files:
  - split: train
    path: ptpt/train-*
  - split: test
    path: ptpt/test-*
  - split: validation
    path: ptpt/validation-*
---

# Dataset Card for ASSIN

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Homepage:** [ASSIN homepage](http://nilc.icmc.usp.br/assin/)
- **Repository:** [ASSIN repository](http://nilc.icmc.usp.br/assin/)
- **Paper:** [ASSIN: Evaluation of Semantic Similarity and Textual Inference](http://propor2016.di.fc.ul.pt/wp-content/uploads/2015/10/assin-overview.pdf)
- **Point of Contact:** [Erick Rocha Fonseca](mailto:[email protected])

### Dataset Summary

The ASSIN (Avaliação de Similaridade Semântica e INferência textual) corpus is a corpus annotated with pairs of sentences written in 
Portuguese that is suitable for the  exploration of textual entailment and paraphrasing classifiers. The corpus contains pairs of sentences 
extracted from news articles written in European Portuguese (EP) and Brazilian Portuguese (BP), obtained from Google News Portugal 
and Brazil, respectively. To create the corpus, the authors started by collecting a set of news articles describing the 
same event (one news article from Google News Portugal and another from Google News Brazil) from Google News. 
Then, they employed Latent Dirichlet Allocation (LDA) models to retrieve pairs of similar sentences between sets of news 
articles that were grouped together around the same topic. For that, two LDA models were trained (for EP and for BP) 
on external and large-scale collections of unannotated news articles from Portuguese and Brazilian news providers, respectively. 
Then, the authors defined a lower and upper threshold for the sentence similarity score of the retrieved pairs of sentences, 
taking into account that high similarity scores correspond to sentences that contain almost the same content (paraphrase candidates), 
and low similarity scores correspond to sentences that are very different in content from each other (no-relation candidates).
From the collection of pairs of sentences obtained at this stage, the authors performed some manual grammatical corrections 
and discarded some of the pairs wrongly retrieved. Furthermore, from a preliminary analysis made to the retrieved sentence pairs 
the authors noticed that the number of contradictions retrieved during the previous stage was very low. Additionally, they also 
noticed that event though paraphrases are not very frequent, they occur with some frequency in news articles. Consequently, 
in contrast with the majority of the currently available corpora for other languages, which consider as labels “neutral”, “entailment” 
and “contradiction” for the task of RTE, the authors of the ASSIN corpus decided to use as labels “none”, “entailment” and “paraphrase”.
Finally, the manual annotation of pairs of sentences was performed by human annotators. At least four annotators were randomly 
selected to annotate each pair of sentences, which is done in two steps: (i) assigning a semantic similarity label (a score between 1 and 5, 
from unrelated to very similar); and (ii) providing an entailment label (one sentence entails the other, sentences are paraphrases, 
or no relation). Sentence pairs where at least three annotators do not agree on the entailment label were considered controversial 
and thus discarded from the gold standard annotations. The full dataset has 10,000 sentence pairs, half of which in Brazilian Portuguese (ptbr) 
and half in European Portuguese (ptpt). Either language variant has 2,500 pairs for training, 500 for validation and 2,000 for testing.

### Supported Tasks and Leaderboards

[More Information Needed]

### Languages

The language supported is Portuguese.

## Dataset Structure

### Data Instances

An example from the ASSIN dataset looks as follows:

```
{
  "entailment_judgment": 0,
  "hypothesis": "André Gomes entra em campo quatro meses depois de uma lesão na perna esquerda o ter afastado dos relvados.",
  "premise": "Relembre-se que o atleta estava afastado dos relvados desde maio, altura em que contraiu uma lesão na perna esquerda.",
  "relatedness_score": 3.5,
  "sentence_pair_id": 1
}
```

### Data Fields

- `sentence_pair_id`: a `int64` feature.
- `premise`: a `string` feature.
- `hypothesis`: a `string` feature.
- `relatedness_score`: a `float32` feature.
- `entailment_judgment`: a classification label, with possible values including `NONE`, `ENTAILMENT`, `PARAPHRASE`.

### Data Splits

The data is split into train, validation and test set. The split sizes are as follow:

|         | Train  | Val   | Test |
| -----   | ------ | ----- | ---- |
| full    | 5000   | 1000  | 4000 |
| ptbr    | 2500   | 500   | 2000 |
| ptpt    | 2500   | 500   | 2000 |

## Dataset Creation

### Curation Rationale

[More Information Needed]

### Source Data

#### Initial Data Collection and Normalization

[More Information Needed]

#### Who are the source language producers?

[More Information Needed]

### Annotations

#### Annotation process

[More Information Needed]

#### Who are the annotators?

[More Information Needed]

### Personal and Sensitive Information

[More Information Needed]

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed]

### Discussion of Biases

[More Information Needed]

### Other Known Limitations

[More Information Needed]

## Additional Information

### Dataset Curators

[More Information Needed]

### Licensing Information

[More Information Needed]

### Citation Information

```
@inproceedings{fonseca2016assin,
  title={ASSIN: Avaliacao de similaridade semantica e inferencia textual},
  author={Fonseca, E and Santos, L and Criscuolo, Marcelo and Aluisio, S},
  booktitle={Computational Processing of the Portuguese Language-12th International Conference, Tomar, Portugal},
  pages={13--15},
  year={2016}
}
```

### Contributions

Thanks to [@jonatasgrosman](https://github.com/jonatasgrosman) for adding this dataset.