Datasets:
Add model id information
Browse files
README.md
CHANGED
@@ -22,7 +22,37 @@ configs:
|
|
22 |
data_files:
|
23 |
- split: train
|
24 |
path: data/train-*
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
---
|
26 |
-
#
|
27 |
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
data_files:
|
23 |
- split: train
|
24 |
path: data/train-*
|
25 |
+
license: apache-2.0
|
26 |
+
task_categories:
|
27 |
+
- feature-extraction
|
28 |
+
language:
|
29 |
+
- en
|
30 |
+
pretty_name: 'DBPedia SPLADE + OpenAI: 100,000 Vectors'
|
31 |
+
size_categories:
|
32 |
+
- 100K<n<1M
|
33 |
---
|
34 |
+
# DBPedia SPLADE + OpenAI: 10,000 SPLADE Sparse Vectors + OpenAI Embedding
|
35 |
|
36 |
+
This dataset has both OpenAI and SPLADE vectors for 100,000 DBPedia entries. This adds SPLADE Vectors to [KShivendu/dbpedia-entities-openai-1M/](https://huggingface.co/datasets/KShivendu/dbpedia-entities-openai-1M)
|
37 |
+
|
38 |
+
Model id used to make these vectors:
|
39 |
+
```python
|
40 |
+
model_id = "naver/efficient-splade-VI-BT-large-doc"
|
41 |
+
```
|
42 |
+
|
43 |
+
For processing the query, use this:
|
44 |
+
```python
|
45 |
+
model_id = "naver/efficient-splade-VI-BT-large-query"
|
46 |
+
```
|
47 |
+
|
48 |
+
If you'd like to extract the indices and weights/values from the vectors, you can do so using the following snippet:
|
49 |
+
|
50 |
+
```python
|
51 |
+
import numpy as np
|
52 |
+
vec = np.array(ds[0]['vec']) # where ds is the dataset
|
53 |
+
|
54 |
+
def get_indices_values(vec):
|
55 |
+
sparse_indices = vec.nonzero()
|
56 |
+
sparse_values = vec[sparse_indices]
|
57 |
+
return sparse_indices, sparse_values
|
58 |
+
```
|