import polars as pl import sys import json from tqdm import tqdm labelmap = {"E": 1.0, "S": 0.1, "C": 0.01, "I": 0.0} split = sys.argv[3] products = ( pl.read_parquet(sys.argv[1]) .filter((pl.col("product_locale") == "us")) .with_columns( pl.concat_str( [ pl.col("product_title"), pl.col("product_description"), pl.col("product_bullet_point"), pl.col("product_brand"), pl.col("product_color"), ], separator=" ", ignore_nulls=True, ).alias("text") ) .select(pl.col("product_id", "text")) ) examples = ( pl.read_parquet(sys.argv[2]) .filter( (pl.col("product_locale") == "us") & (pl.col("small_version") == 1) & (pl.col("split") == split) ) .with_columns( pl.col("esci_label").replace(labelmap).alias("score").cast(pl.Float64) ) .select(pl.col("query_id", "query", "product_id", "score")) ) merged = examples.join(products, on="product_id", how="left") print(merged) result = merged.group_by("query_id").agg( pl.first("query"), pl.col("text"), pl.col("score") ) def save_json(df: pl.DataFrame, path: str): with open(path, "w") as f: for row in tqdm(result.to_dicts(), desc=f"saving {path}"): query = row["query"] pos = [] neg = [] negscore = [] for doc, score in zip(row["text"], row["score"]): if score == 1.0: pos.append(doc) else: neg.append(doc) negscore.append(score) for p in pos: line = json.dumps( {"query": query, "doc": p, "neg": neg, "negscore": negscore} ) f.write(line + "\n") save_json(result, f"{split}.jsonl")