File size: 5,124 Bytes
8663a53 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 |
# coding=utf-8
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""The Multi-Genre NLI Corpus."""
from __future__ import absolute_import, division, print_function
import os
import datasets
_CITATION = """\
@InProceedings{N18-1101,
author = {Williams, Adina
and Nangia, Nikita
and Bowman, Samuel},
title = {A Broad-Coverage Challenge Corpus for
Sentence Understanding through Inference},
booktitle = {Proceedings of the 2018 Conference of
the North American Chapter of the
Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long
Papers)},
year = {2018},
publisher = {Association for Computational Linguistics},
pages = {1112--1122},
location = {New Orleans, Louisiana},
url = {http://aclweb.org/anthology/N18-1101}
}
"""
_DESCRIPTION = """\
The Multi-Genre Natural Language Inference (MultiNLI) corpus is a
crowd-sourced collection of 433k sentence pairs annotated with textual
entailment information. The corpus is modeled on the SNLI corpus, but differs in
that covers a range of genres of spoken and written text, and supports a
distinctive cross-genre generalization evaluation. The corpus served as the
basis for the shared task of the RepEval 2017 Workshop at EMNLP in Copenhagen.
"""
class MultiNLIConfig(datasets.BuilderConfig):
"""BuilderConfig for MultiNLI."""
def __init__(self, **kwargs):
"""BuilderConfig for MultiNLI.
Args:
.
**kwargs: keyword arguments forwarded to super.
"""
super(MultiNLIConfig, self).__init__(version=datasets.Version("1.0.0", ""), **kwargs)
class MultiNli(datasets.GeneratorBasedBuilder):
"""MultiNLI: The Stanford Question Answering Dataset. Version 1.1."""
BUILDER_CONFIGS = [
MultiNLIConfig(
name="plain_text",
description="Plain text",
),
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"premise": datasets.Value("string"),
"hypothesis": datasets.Value("string"),
"label": datasets.features.ClassLabel(names=["entailment", "neutral", "contradiction"]),
}
),
# No default supervised_keys (as we have to pass both premise
# and hypothesis as input).
supervised_keys=None,
homepage="https://www.nyu.edu/projects/bowman/multinli/",
citation=_CITATION,
)
def _vocab_text_gen(self, filepath):
for _, ex in self._generate_examples(filepath):
yield " ".join([ex["premise"], ex["hypothesis"]])
def _split_generators(self, dl_manager):
downloaded_dir = dl_manager.download_and_extract(
"http://storage.googleapis.com/tfds-data/downloads/multi_nli/multinli_1.0.zip"
)
mnli_path = os.path.join(downloaded_dir, "multinli_1.0")
train_path = os.path.join(mnli_path, "multinli_1.0_train.txt")
matched_validation_path = os.path.join(mnli_path, "multinli_1.0_dev_matched.txt")
mismatched_validation_path = os.path.join(mnli_path, "multinli_1.0_dev_mismatched.txt")
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": train_path}),
datasets.SplitGenerator(name="validation_matched", gen_kwargs={"filepath": matched_validation_path}),
datasets.SplitGenerator(name="validation_mismatched", gen_kwargs={"filepath": mismatched_validation_path}),
]
def _generate_examples(self, filepath):
"""Generate mnli examples.
Args:
filepath: a string
Yields:
dictionaries containing "premise", "hypothesis" and "label" strings
"""
for idx, line in enumerate(open(filepath, "rb")):
if idx == 0:
continue # skip header
line = line.strip().decode("utf-8")
split_line = line.split("\t")
# Examples not marked with a three out of five consensus are marked with
# "-" and should not be used in standard evaluations.
if split_line[0] == "-":
continue
# Works for both splits even though dev has some extra human labels.
yield idx, {"premise": split_line[5], "hypothesis": split_line[6], "label": split_line[0]}
|