Datasets:

Modalities:
Text
Formats:
parquet
Languages:
English
Libraries:
Datasets
pandas
License:
File size: 5,124 Bytes
8663a53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
# coding=utf-8
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Lint as: python3
"""The Multi-Genre NLI Corpus."""

from __future__ import absolute_import, division, print_function

import os

import datasets


_CITATION = """\
@InProceedings{N18-1101,
  author = {Williams, Adina
            and Nangia, Nikita
            and Bowman, Samuel},
  title = {A Broad-Coverage Challenge Corpus for
           Sentence Understanding through Inference},
  booktitle = {Proceedings of the 2018 Conference of
               the North American Chapter of the
               Association for Computational Linguistics:
               Human Language Technologies, Volume 1 (Long
               Papers)},
  year = {2018},
  publisher = {Association for Computational Linguistics},
  pages = {1112--1122},
  location = {New Orleans, Louisiana},
  url = {http://aclweb.org/anthology/N18-1101}
}
"""

_DESCRIPTION = """\
The Multi-Genre Natural Language Inference (MultiNLI) corpus is a
crowd-sourced collection of 433k sentence pairs annotated with textual
entailment information. The corpus is modeled on the SNLI corpus, but differs in
that covers a range of genres of spoken and written text, and supports a
distinctive cross-genre generalization evaluation. The corpus served as the
basis for the shared task of the RepEval 2017 Workshop at EMNLP in Copenhagen.
"""


class MultiNLIConfig(datasets.BuilderConfig):
    """BuilderConfig for MultiNLI."""

    def __init__(self, **kwargs):
        """BuilderConfig for MultiNLI.

            Args:
        .
              **kwargs: keyword arguments forwarded to super.
        """
        super(MultiNLIConfig, self).__init__(version=datasets.Version("1.0.0", ""), **kwargs)


class MultiNli(datasets.GeneratorBasedBuilder):
    """MultiNLI: The Stanford Question Answering Dataset. Version 1.1."""

    BUILDER_CONFIGS = [
        MultiNLIConfig(
            name="plain_text",
            description="Plain text",
        ),
    ]

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "premise": datasets.Value("string"),
                    "hypothesis": datasets.Value("string"),
                    "label": datasets.features.ClassLabel(names=["entailment", "neutral", "contradiction"]),
                }
            ),
            # No default supervised_keys (as we have to pass both premise
            # and hypothesis as input).
            supervised_keys=None,
            homepage="https://www.nyu.edu/projects/bowman/multinli/",
            citation=_CITATION,
        )

    def _vocab_text_gen(self, filepath):
        for _, ex in self._generate_examples(filepath):
            yield " ".join([ex["premise"], ex["hypothesis"]])

    def _split_generators(self, dl_manager):

        downloaded_dir = dl_manager.download_and_extract(
            "http://storage.googleapis.com/tfds-data/downloads/multi_nli/multinli_1.0.zip"
        )
        mnli_path = os.path.join(downloaded_dir, "multinli_1.0")
        train_path = os.path.join(mnli_path, "multinli_1.0_train.txt")
        matched_validation_path = os.path.join(mnli_path, "multinli_1.0_dev_matched.txt")
        mismatched_validation_path = os.path.join(mnli_path, "multinli_1.0_dev_mismatched.txt")

        return [
            datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": train_path}),
            datasets.SplitGenerator(name="validation_matched", gen_kwargs={"filepath": matched_validation_path}),
            datasets.SplitGenerator(name="validation_mismatched", gen_kwargs={"filepath": mismatched_validation_path}),
        ]

    def _generate_examples(self, filepath):
        """Generate mnli examples.

        Args:
          filepath: a string

        Yields:
          dictionaries containing "premise", "hypothesis" and "label" strings
        """
        for idx, line in enumerate(open(filepath, "rb")):
            if idx == 0:
                continue  # skip header
            line = line.strip().decode("utf-8")
            split_line = line.split("\t")
            # Examples not marked with a three out of five consensus are marked with
            # "-" and should not be used in standard evaluations.
            if split_line[0] == "-":
                continue
            # Works for both splits even though dev has some extra human labels.
            yield idx, {"premise": split_line[5], "hypothesis": split_line[6], "label": split_line[0]}