Datasets:

Modalities:
Text
Formats:
parquet
Languages:
English
Libraries:
Datasets
pandas
License:
albertvillanova HF staff commited on
Commit
4a17b6c
1 Parent(s): 6dc77db

Delete legacy dataset_infos.json

Browse files
Files changed (1) hide show
  1. dataset_infos.json +0 -86
dataset_infos.json DELETED
@@ -1,86 +0,0 @@
1
- {
2
- "default": {
3
- "description": "The Multi-Genre Natural Language Inference (MultiNLI) corpus is a\ncrowd-sourced collection of 433k sentence pairs annotated with textual\nentailment information. The corpus is modeled on the SNLI corpus, but differs in\nthat covers a range of genres of spoken and written text, and supports a\ndistinctive cross-genre generalization evaluation. The corpus served as the\nbasis for the shared task of the RepEval 2017 Workshop at EMNLP in Copenhagen.\n",
4
- "citation": "@InProceedings{N18-1101,\n author = {Williams, Adina\n and Nangia, Nikita\n and Bowman, Samuel},\n title = {A Broad-Coverage Challenge Corpus for\n Sentence Understanding through Inference},\n booktitle = {Proceedings of the 2018 Conference of\n the North American Chapter of the\n Association for Computational Linguistics:\n Human Language Technologies, Volume 1 (Long\n Papers)},\n year = {2018},\n publisher = {Association for Computational Linguistics},\n pages = {1112--1122},\n location = {New Orleans, Louisiana},\n url = {http://aclweb.org/anthology/N18-1101}\n}\n",
5
- "homepage": "https://www.nyu.edu/projects/bowman/multinli/",
6
- "license": "",
7
- "features": {
8
- "promptID": {
9
- "dtype": "int32",
10
- "_type": "Value"
11
- },
12
- "pairID": {
13
- "dtype": "string",
14
- "_type": "Value"
15
- },
16
- "premise": {
17
- "dtype": "string",
18
- "_type": "Value"
19
- },
20
- "premise_binary_parse": {
21
- "dtype": "string",
22
- "_type": "Value"
23
- },
24
- "premise_parse": {
25
- "dtype": "string",
26
- "_type": "Value"
27
- },
28
- "hypothesis": {
29
- "dtype": "string",
30
- "_type": "Value"
31
- },
32
- "hypothesis_binary_parse": {
33
- "dtype": "string",
34
- "_type": "Value"
35
- },
36
- "hypothesis_parse": {
37
- "dtype": "string",
38
- "_type": "Value"
39
- },
40
- "genre": {
41
- "dtype": "string",
42
- "_type": "Value"
43
- },
44
- "label": {
45
- "names": [
46
- "entailment",
47
- "neutral",
48
- "contradiction"
49
- ],
50
- "_type": "ClassLabel"
51
- }
52
- },
53
- "builder_name": "multi_nli",
54
- "dataset_name": "multi_nli",
55
- "config_name": "default",
56
- "version": {
57
- "version_str": "0.0.0",
58
- "major": 0,
59
- "minor": 0,
60
- "patch": 0
61
- },
62
- "splits": {
63
- "train": {
64
- "name": "train",
65
- "num_bytes": 410210306,
66
- "num_examples": 392702,
67
- "dataset_name": null
68
- },
69
- "validation_matched": {
70
- "name": "validation_matched",
71
- "num_bytes": 10063907,
72
- "num_examples": 9815,
73
- "dataset_name": null
74
- },
75
- "validation_mismatched": {
76
- "name": "validation_mismatched",
77
- "num_bytes": 10610189,
78
- "num_examples": 9832,
79
- "dataset_name": null
80
- }
81
- },
82
- "download_size": 224005223,
83
- "dataset_size": 430884402,
84
- "size_in_bytes": 654889625
85
- }
86
- }