--- --- # Dataset Card for "multi_nli" ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks](#supported-tasks) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits Sample Size](#data-splits-sample-size) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## [Dataset Description](#dataset-description) - **Homepage:** [https://www.nyu.edu/projects/bowman/multinli/](https://www.nyu.edu/projects/bowman/multinli/) - **Repository:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Size of downloaded dataset files:** 216.34 MB - **Size of the generated dataset:** 73.39 MB - **Total amount of disk used:** 289.74 MB ### [Dataset Summary](#dataset-summary) The Multi-Genre Natural Language Inference (MultiNLI) corpus is a crowd-sourced collection of 433k sentence pairs annotated with textual entailment information. The corpus is modeled on the SNLI corpus, but differs in that covers a range of genres of spoken and written text, and supports a distinctive cross-genre generalization evaluation. The corpus served as the basis for the shared task of the RepEval 2017 Workshop at EMNLP in Copenhagen. ### [Supported Tasks](#supported-tasks) [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### [Languages](#languages) [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## [Dataset Structure](#dataset-structure) We show detailed information for up to 5 configurations of the dataset. ### [Data Instances](#data-instances) #### plain_text - **Size of downloaded dataset files:** 216.34 MB - **Size of the generated dataset:** 73.39 MB - **Total amount of disk used:** 289.74 MB An example of 'validation_matched' looks as follows. ``` { "hypothesis": "flammable", "label": 0, "premise": "inflammable" } ``` ### [Data Fields](#data-fields) The data fields are the same among all splits. #### plain_text - `premise`: a `string` feature. - `hypothesis`: a `string` feature. - `label`: a classification label, with possible values including `entailment` (0), `neutral` (1), `contradiction` (2). ### [Data Splits Sample Size](#data-splits-sample-size) | name |train |validation_matched|validation_mismatched| |----------|-----:|-----------------:|--------------------:| |plain_text|392702| 9815| 9832| ## [Dataset Creation](#dataset-creation) ### [Curation Rationale](#curation-rationale) [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### [Source Data](#source-data) [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### [Annotations](#annotations) [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### [Personal and Sensitive Information](#personal-and-sensitive-information) [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## [Considerations for Using the Data](#considerations-for-using-the-data) ### [Social Impact of Dataset](#social-impact-of-dataset) [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### [Discussion of Biases](#discussion-of-biases) [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### [Other Known Limitations](#other-known-limitations) [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## [Additional Information](#additional-information) ### [Dataset Curators](#dataset-curators) [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### [Licensing Information](#licensing-information) [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### [Citation Information](#citation-information) ``` @InProceedings{N18-1101, author = "Williams, Adina and Nangia, Nikita and Bowman, Samuel", title = "A Broad-Coverage Challenge Corpus for Sentence Understanding through Inference", booktitle = "Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)", year = "2018", publisher = "Association for Computational Linguistics", pages = "1112--1122", location = "New Orleans, Louisiana", url = "http://aclweb.org/anthology/N18-1101" } ``` ### Contributions Thanks to [@patrickvonplaten](https://github.com/patrickvonplaten), [@thomwolf](https://github.com/thomwolf), [@mariamabarham](https://github.com/mariamabarham) for adding this dataset.