davidmezzetti
commited on
Commit
•
38690e1
1
Parent(s):
a18072d
Streaming dataset generation
Browse filesThe current wikipedia.py script spawns a process for every raw data file and keeps the entire dataset in memory until the end of the process. With 100+ files in the input dataset, it's near impossible to build this with lower resourced machines.
This PR modifies wikipedia.py to support streaming dataset generation as follows:
- Yield each Wikipedia article vs reading entire files into memory
- Only spawn up to os.cpu_count() processes
- Use shared queues, with a limited buffer, between the main process and worker processes
- Yield each processed article to iteratively build the dataset
With these changes, the process will scale based on the resources available.
- wikipedia.py +57 -31
wikipedia.py
CHANGED
@@ -20,14 +20,15 @@
|
|
20 |
import bz2
|
21 |
import codecs
|
22 |
import json
|
|
|
23 |
import re
|
24 |
import xml.etree.cElementTree as etree
|
|
|
|
|
25 |
from urllib.parse import quote
|
26 |
-
import mwparserfromhell
|
27 |
-
from multiprocess import Process, Manager
|
28 |
-
from tqdm import tqdm
|
29 |
|
30 |
import datasets
|
|
|
31 |
|
32 |
|
33 |
logger = datasets.logging.get_logger(__name__)
|
@@ -904,8 +905,8 @@ class WikipediaConfig(datasets.BuilderConfig):
|
|
904 |
self.language = language
|
905 |
|
906 |
|
907 |
-
_DATE = "
|
908 |
-
|
909 |
|
910 |
class Wikipedia(datasets.GeneratorBasedBuilder):
|
911 |
"""Wikipedia dataset."""
|
@@ -967,9 +968,8 @@ class Wikipedia(datasets.GeneratorBasedBuilder):
|
|
967 |
|
968 |
# Use dictionary since testing mock always returns the same result.
|
969 |
|
970 |
-
|
971 |
downloaded_files = dl_manager.download({"xml": xml_urls})
|
972 |
-
print("Finished downloading Wikipedia dump")
|
973 |
|
974 |
return [
|
975 |
datasets.SplitGenerator( # pylint:disable=g-complex-comprehension
|
@@ -983,7 +983,6 @@ class Wikipedia(datasets.GeneratorBasedBuilder):
|
|
983 |
def _extract_content(filepath):
|
984 |
"""Extracts article content from a single WikiMedia XML file."""
|
985 |
logger.info("generating examples from = %s", filepath)
|
986 |
-
content = []
|
987 |
f = bz2.BZ2File(filename=filepath)
|
988 |
# Workaround due to: https://github.com/tensorflow/tensorflow/issues/33563
|
989 |
utf_f = codecs.getreader("utf-8")(f)
|
@@ -991,6 +990,7 @@ class Wikipedia(datasets.GeneratorBasedBuilder):
|
|
991 |
for unused_event, elem in context:
|
992 |
if not elem.tag.endswith("page"):
|
993 |
continue
|
|
|
994 |
namespace = elem.tag[:-4]
|
995 |
title = elem.find(f"./{namespace}title").text
|
996 |
ns = elem.find(f"./{namespace}ns").text
|
@@ -1009,8 +1009,7 @@ class Wikipedia(datasets.GeneratorBasedBuilder):
|
|
1009 |
if raw_content is None or red_ is not None:
|
1010 |
continue
|
1011 |
|
1012 |
-
|
1013 |
-
return content
|
1014 |
|
1015 |
def _clean_content(inputs, language):
|
1016 |
"""Cleans raw wikicode to extract text."""
|
@@ -1028,28 +1027,55 @@ class Wikipedia(datasets.GeneratorBasedBuilder):
|
|
1028 |
|
1029 |
return id_, {"id": id_, "url": url, "title": title, "text": text}
|
1030 |
|
1031 |
-
|
1032 |
-
|
1033 |
-
examples = manager.list()
|
1034 |
-
processes = []
|
1035 |
-
for filepath in filepaths:
|
1036 |
-
def parse_and_clean(examples):
|
1037 |
-
content = _extract_content(filepath)
|
1038 |
-
for obj in tqdm(content):
|
1039 |
-
examples.append(_clean_content(obj, language=language))
|
1040 |
-
p = Process(target=parse_and_clean, args=(examples,))
|
1041 |
-
p.start()
|
1042 |
-
processes.append(p)
|
1043 |
-
|
1044 |
-
for p in processes:
|
1045 |
-
p.join()
|
1046 |
-
|
1047 |
-
print("Parsed and cleaned Wikipedia examples")
|
1048 |
-
|
1049 |
-
for example in examples:
|
1050 |
-
if example is not None:
|
1051 |
-
yield example
|
1052 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1053 |
|
1054 |
def _parse_and_clean_wikicode(raw_content, parser, language):
|
1055 |
"""Strips formatting and unwanted sections from raw page content."""
|
|
|
20 |
import bz2
|
21 |
import codecs
|
22 |
import json
|
23 |
+
import os
|
24 |
import re
|
25 |
import xml.etree.cElementTree as etree
|
26 |
+
|
27 |
+
from multiprocessing import Process, Queue
|
28 |
from urllib.parse import quote
|
|
|
|
|
|
|
29 |
|
30 |
import datasets
|
31 |
+
import mwparserfromhell
|
32 |
|
33 |
|
34 |
logger = datasets.logging.get_logger(__name__)
|
|
|
905 |
self.language = language
|
906 |
|
907 |
|
908 |
+
_DATE = "20240101"
|
909 |
+
_COMPLETE = 1
|
910 |
|
911 |
class Wikipedia(datasets.GeneratorBasedBuilder):
|
912 |
"""Wikipedia dataset."""
|
|
|
968 |
|
969 |
# Use dictionary since testing mock always returns the same result.
|
970 |
|
971 |
+
# Download Wikipedia files
|
972 |
downloaded_files = dl_manager.download({"xml": xml_urls})
|
|
|
973 |
|
974 |
return [
|
975 |
datasets.SplitGenerator( # pylint:disable=g-complex-comprehension
|
|
|
983 |
def _extract_content(filepath):
|
984 |
"""Extracts article content from a single WikiMedia XML file."""
|
985 |
logger.info("generating examples from = %s", filepath)
|
|
|
986 |
f = bz2.BZ2File(filename=filepath)
|
987 |
# Workaround due to: https://github.com/tensorflow/tensorflow/issues/33563
|
988 |
utf_f = codecs.getreader("utf-8")(f)
|
|
|
990 |
for unused_event, elem in context:
|
991 |
if not elem.tag.endswith("page"):
|
992 |
continue
|
993 |
+
|
994 |
namespace = elem.tag[:-4]
|
995 |
title = elem.find(f"./{namespace}title").text
|
996 |
ns = elem.find(f"./{namespace}ns").text
|
|
|
1009 |
if raw_content is None or red_ is not None:
|
1010 |
continue
|
1011 |
|
1012 |
+
yield (id_, title, raw_content)
|
|
|
1013 |
|
1014 |
def _clean_content(inputs, language):
|
1015 |
"""Cleans raw wikicode to extract text."""
|
|
|
1027 |
|
1028 |
return id_, {"id": id_, "url": url, "title": title, "text": text}
|
1029 |
|
1030 |
+
# Create queues, limit size of output queue
|
1031 |
+
inputs, outputs = Queue(), Queue(30000)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1032 |
|
1033 |
+
def execute(inputs, outputs):
|
1034 |
+
try:
|
1035 |
+
# Process until inputs queue is exhausted
|
1036 |
+
while not inputs.empty():
|
1037 |
+
batch, filepath = [], inputs.get()
|
1038 |
+
for obj in _extract_content(filepath):
|
1039 |
+
batch.append(_clean_content(obj, language=language))
|
1040 |
+
if len(batch) == 1024:
|
1041 |
+
outputs.put(batch)
|
1042 |
+
batch = []
|
1043 |
+
|
1044 |
+
if batch:
|
1045 |
+
outputs.put(batch)
|
1046 |
+
|
1047 |
+
finally:
|
1048 |
+
# Write message that process is complete
|
1049 |
+
outputs.put(_COMPLETE)
|
1050 |
+
|
1051 |
+
for filepath in filepaths:
|
1052 |
+
inputs.put(filepath)
|
1053 |
+
|
1054 |
+
# Start worker processes
|
1055 |
+
processes = []
|
1056 |
+
for _ in range(min(len(filepaths), os.cpu_count())):
|
1057 |
+
process = Process(target=execute, args=(inputs, outputs))
|
1058 |
+
process.start()
|
1059 |
+
processes.append(process)
|
1060 |
+
|
1061 |
+
# Read output from worker processes
|
1062 |
+
empty, complete = False, 0
|
1063 |
+
while not empty:
|
1064 |
+
# Get next result
|
1065 |
+
result = outputs.get()
|
1066 |
+
|
1067 |
+
# Mark process as complete if all workers are complete and output queue is empty
|
1068 |
+
if result == _COMPLETE:
|
1069 |
+
complete += 1
|
1070 |
+
empty = len(processes) == complete and outputs.empty()
|
1071 |
+
|
1072 |
+
elif result:
|
1073 |
+
for r in result:
|
1074 |
+
if r is not None:
|
1075 |
+
yield r
|
1076 |
+
|
1077 |
+
for process in processes:
|
1078 |
+
process.join()
|
1079 |
|
1080 |
def _parse_and_clean_wikicode(raw_content, parser, language):
|
1081 |
"""Strips formatting and unwanted sections from raw page content."""
|