|
|
|
|
|
|
|
import os |
|
import cv2 |
|
import numpy as np |
|
from ultralytics import YOLO |
|
|
|
from dora import Node |
|
import pyarrow as pa |
|
|
|
model = YOLO("/home/peiji/yolov8n.pt") |
|
|
|
node = Node() |
|
|
|
IMAGE_WIDTH = int(os.getenv("IMAGE_WIDTH", 960)) |
|
IMAGE_HEIGHT = int(os.getenv("IMAGE_HEIGHT", 540)) |
|
|
|
for event in node: |
|
event_type = event["type"] |
|
if event_type == "INPUT": |
|
event_id = event["id"] |
|
if event_id == "image": |
|
print("[object detection] received image input") |
|
image = event["value"].to_numpy().reshape((IMAGE_HEIGHT, IMAGE_WIDTH, 3)) |
|
|
|
frame = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) |
|
frame = frame[:, :, ::-1] |
|
results = model(frame) |
|
|
|
boxes = np.array(results[0].boxes.xywh.cpu()) |
|
conf = np.array(results[0].boxes.conf.cpu()) |
|
label = np.array(results[0].boxes.cls.cpu()) |
|
|
|
arrays = np.concatenate((boxes, conf[:, None], label[:, None]), axis=1) |
|
|
|
node.send_output("bbox", pa.array(arrays.ravel()), event["metadata"]) |
|
else: |
|
print("[object detection] ignoring unexpected input:", event_id) |
|
elif event_type == "STOP": |
|
print("[object detection] received stop") |
|
elif event_type == "ERROR": |
|
print("[object detection] error: ", event["error"]) |
|
else: |
|
print("[object detection] received unexpected event:", event_type) |
|
|