Create sci_lay.py
Browse files- sci_lay.py +160 -0
sci_lay.py
ADDED
@@ -0,0 +1,160 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""SciLay Dataset."""
|
2 |
+
|
3 |
+
import gzip
|
4 |
+
import json
|
5 |
+
import os
|
6 |
+
|
7 |
+
import datasets
|
8 |
+
from datasets.download.streaming_download_manager import FilesIterable
|
9 |
+
|
10 |
+
_HOMEPAGE = ""
|
11 |
+
|
12 |
+
_CITATION = """
|
13 |
+
"""
|
14 |
+
|
15 |
+
_DESCRIPTION = """
|
16 |
+
SCILAY comprises 46,486 instances, each representing a scientific article in the biomedical domain.
|
17 |
+
Each instance in the dataset includes the following components:
|
18 |
+
- plain_text: Containing a plain language summary of the scientific article. This section is written in a simple and accessible language, and is intended to be understandable by a wide audience.
|
19 |
+
- technical_text: This section contains the abstract of the scientific article. It provides a detailed and technical description of the research conducted in the article.
|
20 |
+
In addition to the textual content, each instance is associated with the following metadata:
|
21 |
+
- Keywords: Keywords that capture the main topics and themes addressed in the article.
|
22 |
+
- Journal: The journal in which the article is published, providing context about the source of the research.
|
23 |
+
- DOI (Digital Object Identifier): A unique identifier for the article, facilitating easy referencing.
|
24 |
+
The main objective of the SCILAY dataset is to support the development and evaluation of text summarization models that can effectively simplify complex scientific language while retaining the essential information.
|
25 |
+
"""
|
26 |
+
|
27 |
+
_LICENSE = "Creative Commons Attribution 4.0 International"
|
28 |
+
|
29 |
+
_SPLIT_NAMES = {datasets.Split.TRAIN: "train", datasets.Split.VALIDATION: "validation", datasets.Split.TEST: "test"}
|
30 |
+
_URL = "data/{version}/{split_name}.zip"
|
31 |
+
|
32 |
+
_DOI = "doi"
|
33 |
+
_PMCID = "pmcid"
|
34 |
+
_SUMMARY = "plain_text"
|
35 |
+
_ABSTRACT = "technical_text"
|
36 |
+
_JOURNAL = "journal"
|
37 |
+
_TOPICS = "topics"
|
38 |
+
_KEYWORDS = "keywords"
|
39 |
+
|
40 |
+
_JOURNALS = {
|
41 |
+
"NC": "Nature Communications",
|
42 |
+
"A": "Animals: an Open Access Journal from MDPI",
|
43 |
+
"NIHR": "NIHR Journals Library",
|
44 |
+
"PLGEN": "PLoS Genetics",
|
45 |
+
"PLPAT": "PLoS Pathogens",
|
46 |
+
"PLCB": "PLoS Computational Biology",
|
47 |
+
"PLNTD": "PLoS Neglected Tropical Diseases",
|
48 |
+
"B": "Biology",
|
49 |
+
"I": "Insects",
|
50 |
+
"EL": "eLife",
|
51 |
+
"PLB": "PLoS Biology",
|
52 |
+
"CB": "Communications Biology",
|
53 |
+
"SD": "Scientific Data",
|
54 |
+
"MBIO": "mBio",
|
55 |
+
"C": "Cancers",
|
56 |
+
"OTHER": "Others"
|
57 |
+
}
|
58 |
+
|
59 |
+
# Available versions:
|
60 |
+
# 1.0.0 cased raw strings.
|
61 |
+
|
62 |
+
_VERSION = "1.0.0"
|
63 |
+
|
64 |
+
class SciLayConfig(datasets.BuilderConfig):
|
65 |
+
"""BuilderConfig for SciLay."""
|
66 |
+
|
67 |
+
def __init__(self, journals="all", version=_VERSION, **kwargs):
|
68 |
+
"""BuilderConfig for SciLay.
|
69 |
+
Args:
|
70 |
+
journals (str or list, default 'all'): List of journal names. Either 'all' or a combination
|
71 |
+
of {'NC', 'A', 'NIHR', 'PLGEN', 'PLPAT', 'PLCB', 'PLNTD', 'B', 'I', 'EL', 'PLB', 'CB', 'SD', 'MBIO', 'C', 'OTHER'}.
|
72 |
+
**kwargs: keyword arguments forwarded to super.
|
73 |
+
"""
|
74 |
+
if isinstance(journals, str):
|
75 |
+
journals = [journals]
|
76 |
+
name = "+".join(journals)
|
77 |
+
if name == "all":
|
78 |
+
journals = list(_JOURNALS)
|
79 |
+
if version != _VERSION:
|
80 |
+
name = f"{name}-{version}"
|
81 |
+
super().__init__(name=name, version=version, **kwargs)
|
82 |
+
self.journals = journals
|
83 |
+
|
84 |
+
class SciLay(datasets.GeneratorBasedBuilder):
|
85 |
+
"""SciLay datasets."""
|
86 |
+
|
87 |
+
BUILDER_CONFIG_CLASS = SciLayConfig
|
88 |
+
BUILDER_CONFIGS = [
|
89 |
+
SciLayConfig(
|
90 |
+
journals="all",
|
91 |
+
description="Articles from all journals.",
|
92 |
+
),
|
93 |
+
] + [
|
94 |
+
SciLayConfig(
|
95 |
+
journals=k,
|
96 |
+
description=f"Articles from journals {k}: {v}",
|
97 |
+
)
|
98 |
+
for k, v in sorted(_JOURNALS.items())
|
99 |
+
]
|
100 |
+
DEFAULT_CONFIG_NAME = "all"
|
101 |
+
VERSION = _VERSION
|
102 |
+
|
103 |
+
def _info(self):
|
104 |
+
return datasets.DatasetInfo(
|
105 |
+
description=_DESCRIPTION,
|
106 |
+
features=datasets.Features({
|
107 |
+
_DOI: datasets.Value("string"),
|
108 |
+
_PMCID: datasets.Value("string"),
|
109 |
+
_SUMMARY: datasets.Value("string"),
|
110 |
+
_ABSTRACT: datasets.Value("string"),
|
111 |
+
_JOURNAL: datasets.Value("string"),
|
112 |
+
_TOPICS: datasets.Sequence(datasets.Value("string")),
|
113 |
+
_KEYWORDS: datasets.Sequence(datasets.Value("string"))
|
114 |
+
}),
|
115 |
+
supervised_keys=(_ABSTRACT, _SUMMARY),
|
116 |
+
homepage=_HOMEPAGE,
|
117 |
+
license=_LICENSE,
|
118 |
+
citation=_CITATION,
|
119 |
+
)
|
120 |
+
|
121 |
+
def _split_generators(self, dl_manager):
|
122 |
+
"""Returns SplitGenerators."""
|
123 |
+
urls = {
|
124 |
+
split: _URL.format(version=self.config.version, split_name=split_name)
|
125 |
+
for split, split_name in _SPLIT_NAMES.items()
|
126 |
+
}
|
127 |
+
dl_paths = dl_manager.download_and_extract(urls)
|
128 |
+
paths = {
|
129 |
+
split: [
|
130 |
+
dl_manager.iter_files(os.path.join(dl_paths[split], split_name, code)) for code in self.config.journals
|
131 |
+
]
|
132 |
+
for split, split_name in _SPLIT_NAMES.items()
|
133 |
+
}
|
134 |
+
raise Exception(f"paths creati = {[file_path.__repr__ for file_path in paths]}")
|
135 |
+
return [
|
136 |
+
datasets.SplitGenerator(
|
137 |
+
name=split,
|
138 |
+
gen_kwargs={"paths": paths[split]},
|
139 |
+
)
|
140 |
+
for split in _SPLIT_NAMES
|
141 |
+
]
|
142 |
+
|
143 |
+
def _generate_examples(self, paths=None):
|
144 |
+
"""Yields examples."""
|
145 |
+
for paths_per_journal in paths:
|
146 |
+
for path in paths_per_journal:
|
147 |
+
with open(path, "rb") as fin:
|
148 |
+
fin = gzip.GzipFile(fileobj=fin)
|
149 |
+
for row in fin:
|
150 |
+
json_obj = json.loads(row)
|
151 |
+
yield json_obj["doi"], {
|
152 |
+
_DOI: json_obj[_DOI],
|
153 |
+
_PMCID: json_obj[_PMCID],
|
154 |
+
_SUMMARY: json_obj[_SUMMARY],
|
155 |
+
_ABSTRACT: json_obj[_ABSTRACT],
|
156 |
+
_JOURNAL: json_obj[_JOURNAL],
|
157 |
+
_TOPICS: json_obj[_TOPICS],
|
158 |
+
_KEYWORDS: json_obj[_KEYWORDS]
|
159 |
+
}
|
160 |
+
|